Editorial

Special Section on Optical Lithography Extension Beyond the 14-nm Node

J. Micro/Nanolith. MEMS MOEMS. 13(1), 010103 (Apr 15, 2014). doi:10.1117/1.JMM.13.1.010103
History:
Text Size: A A A

Open Access Open Access

While extreme ultraviolet lithography is still maturing, optical lithography is continuing as the primary lithographic technology for manufacturing over the next several years. Extension of water-based immersion lithography to the 20-nm half-pitch and below (10-nm logic node) requires the use of innovative resolution enhancement techniques, solutions to complexities introduced by hyper-NA optics, and extensive use of double or multiple sequential exposure and patterning techniques, and possibly even complementary use of optical lithography with non-traditional techniques. In addition to resolution, very tight overlay control and high quality photomasks are also necessary. The successful use of optics to provide viable working solutions for these device nodes will require fundamental integration of all aspects of the patterning process. For the 14-nm node and beyond, early design technology co-optimization is also necessary to ensure the patterning solution can enable design for products.

The seven papers found in this issue’s Special Section on Optical Lithography Extension Beyond the 14-nm Node, compiled by guest editors Will Conley of Cymer LLC and Kafai Lai of IBM Corp., cover a variety of topics that are advancing the field of optical nano- and microlithography that extend optical lithography beyond the 14-nm technology node and enable circuit scaling. Two papers describe how greater understanding and predictability of the photomask is required at the 14-nm node. One paper emphasizes the interaction of lithography and etch for profile control in multiple patterning. Five out of seven papers are centered on the use of lithography modeling, indicating the central role of computation lithography in pushing any lithography technique to its ultimate limits. Finally, the important role of metrology and its integral use in lithography process control rounds out this interesting collection of papers.

Several important lessons emerge from these papers, and from the overall efforts of the semiconductor lithography community towards extending optical lithography beyond the 14-nm node. First and foremost, it can be done. The challenges are legion, but they are being met. Second, almost every detail is important (and bordering on the critical). Many effects once considered second or third order are now important enough to command considerable attention. But finally, an important question still remains: is it worth it? While we can extend optical lithography beyond the 14-nm node, should we? Will our companies remain profitable while trying to do so? This last question still awaits an answer. In the meantime, lithographers continue to do what they do best: push on.

© The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

Citation

Chris Mack
"Special Section on Optical Lithography Extension Beyond the 14-nm Node", J. Micro/Nanolith. MEMS MOEMS. 13(1), 010103 (Apr 15, 2014). ; http://dx.doi.org/10.1117/1.JMM.13.1.010103


Figures

Tables

References

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Journal Articles

Related Proceedings Articles

Related Book Chapters

Topic Collections

PubMed Articles
Advertisement


 

  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Article
Sign in or Create a personal account to Buy this article ($20 for members, $25 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.