Paper
21 June 1988 The Use Of Fiber Optic Chemical Sensors (FOGS) In Medical Applications: Enzyme-Based Systems
Stanley M. Klainer, J. Milton Harris
Author Affiliations +
Proceedings Volume 0906, Optical Fibers in Medicine III; (1988) https://doi.org/10.1117/12.945269
Event: 1988 Los Angeles Symposium: O-E/LASE '88, 1988, Los Angeles, CA, United States
Abstract
The potential of fiber optic chemical sensors (FOGS) for medical applications is an accepted fact. Indeed, many companies are arduously pursuing the pH, pCO2, and p02 sensors. These, however, only represent the beginning of what, eventually, could be the next generation approach to diagnostics and monitoring. The key to a good FOGS system is to: (i) make, or adapt, accepted laboratory chemistry so that it works, without loss of sensitivity or specificity, on a fiber optic; (ii) assure that sensor neither affects, or is affected by, the biological meltum into which it is placed; (iii) have optimized, dedicated instrumentation to illuminate the sensor, and to handle and process its output signal; and (iv) perform a necessary diagnostic, monitoring or clinical function better, faster, more accurately or less expensively than existing approacbes. Theoretically, there are no limits to the reactions that can be selected to identify and quantify a particular chemical or physical happening using a species specific FOGS. In practice, however, the choices are restricted because: (i) many of the existing tests use sample prepreparation, such as concentration and purification, which is not possible for many FOGS usages; (ii) the chemistry on the fiber must meet FDA criteria; (iii) the chemistry is not stable enough for long term storage and (iv) measurements which are marginal in the laboratory, will not work on a fiber. In the present research the potential of using enzymes as the sensing material is being evaluated. To date emphasis has been placed on the immobilization of the enzyme on the fiber optic without loss of activity or specificity. The selected enzyme for this effort is 3α-hydroxysteroid dehydrogenase. It was selected with the eventual goal of analyzing bile acid concentrations.
© (1988) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Stanley M. Klainer and J. Milton Harris "The Use Of Fiber Optic Chemical Sensors (FOGS) In Medical Applications: Enzyme-Based Systems", Proc. SPIE 0906, Optical Fibers in Medicine III, (21 June 1988); https://doi.org/10.1117/12.945269
Lens.org Logo
CITATIONS
Cited by 5 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Optical fiber cables

Fiber optic gyroscopes

Sensors

Fiber optics

Optical fibers

Fiber optics sensors

Chemistry

Back to Top