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Abstract. Photolithography for patterns with periodicity in the illumination
plane (2.5-D lithography) has seen rapid advances over the past decade,
with the introduction of holographic lithography and the further develop-
ment of phase-contrast and grayscale photolithography methods.
However, each of these techniques suffers from substantial difficulties pre-
venting further integration into device fabrication: a lack of parallel
processing capabilities and dimension limitations. Here, we present a
demonstration of controlled layer topography through modulation of
both the exposure dose and exposure focal plane yielding reproducible
2.5-D patterns which are applied to the further development of plasmonic
gratings. This process is entirely compatible with commercially available
i-line photolithography and etch hardware, enabling a path to ready inte-
gration. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attri-
bution of the original publication, including its DOI. [DOI: 10.1117/1.JMM.12.3.033009]
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1 Introduction
The controlled fabrication of surface topography—with
nanoscale patterns more intricate than square-edged channels
or gratings—has seen a recent rise in interest.1 In particular,
controlled patterning of surfaces with limited, 2.5-
dimensional (2.5-D) (for patterns with periodicity in the
illumination plane) or complete [fully three-dimensional
(3-D)] pattern variation normal to the wafer surface has
seen increased demand.2 These structures find application
in propagating plasmon-mode biosensors3–6 and assays
that can control protein7 or block copolymer8 absorption.

However, no general and parallel fabrication technique
has emerged to fill this need. Focused ion beam sputtering
is well known;9 however, it presents clear integration diffi-
culties since it is a serial, scanned-beam process. Conformal
phase masks have been used to fabricate micron-thick layers
with intricate 3-D structure,10,11 yet are not capable of pat-
terning a surface layer without first patterning the mask
itself, and without taking advantage of an optical reduction
factor. Interference lithography12 limits the feature size to
between λ∕2 and 3λ∕2, placing severe constraints on final
dimensions of devices made with conventional tools. Recent
developments in spatially controlled deposition kinetics13 are

promising, but limit materials and geometry. Grayscale14 and
multilayer techniques15 limit feature sizes as well, and
require expensive single mask or multiple mask sets.

In this work, a fabrication approach that does not suffer
from these difficulties is presented. By controlling not just
the exposure dose delivered, but also the illumination profile
in the photoresist (the aerial image), periodic structures with
a wide variety of profiles are fabricated. These structures are
created using off-the-shelf hardware, operating with well-
understood i-line illumination (λ ¼ 365 nm) and with com-
mercially available photoresists, and modeling the exposure
with commercially supported codes. Examples of using this
technique to fabricate structures with variation in size and
curvature are demonstrated. Moreover, the approach is gen-
eralized not only to the fabrication of structures in photore-
sist, but also the etch transfer of those structures to an
underlayer. This is accomplished by control of the aerial
image; by modulating the exposure dose delivered, the image
focus, and the postexposure conditions:16 the postexposure
bake, spray development, and hard bake. The modified
mask feature spacing controls the interaction between the
focal plane and the aerial image; the dose and focus
modulations change the absorbed axial image, and the
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development parameters control the kinetics of the develop-
ment. Each of these can be simulated numerically to suffi-
cient precision to reliably produce the desired 2.5-D pattern.

2 Experiments and Methods
To develop an appropriate test structure, full-field finite-
difference time domain (FDTD) simulations were performed
in Lumerical FDTD. The desired image plane intensity was
simulated with the PROLITH lithography simulation pack-
age, by KLA-Tencor. The design space under consideration
consists of devices with sinusoidal or smoothly curved side-
wall profiles, as depicted in Fig. 1. With a specific design in
mind, PROLITH was used to calculate the desired photore-
sist image, taking into account the photoresist and anti-
reflection layers, the substrate materials and variation in
sidewall profile. The material parameters used came exclu-
sively from the PROLITH database, with the exception of the
data for the SPR-220 resist, which was supplied by the
manufacturer. Having established a materials stack, itera-
tions were performed over physically controllable inputs—
the focus plane and optical dose delivered—to determine the
experimental parameters.

To verify these results experimentally, the appropriate
photoresist thickness for the design feature size and depth
was calculated. Typically, the simulation optical stack con-
sists of a constant 165 nm layer of Brewer Science XHRi-16c
anti-reflective coating (ARC) beneath the Megaposit SPR-
220 photoresist, with a thickness of ≈2 μm. A line-space
grating of 400 nm lines with 500 nm spaces was used, oper-
ating at the linear resolution limit of i-line lithography. This
mask was used to fabricate metal-dielectric structures in
which plasmon resonances, discussed below, were observed.

Bare silicon wafers (with Miller indices h100i) were
coated with the photoresist stack. Manufacturer suggested
solvent bake times for each layer were used; in the case
of SPR-220: 90°C for 60 s. The wafers were exposed
using a GCA Autostep 200 i-line wafer stepper, using a
numerical aperture of 0.45 (σ ¼ 0.5). The tool dose was veri-
fied before each batch: values of ≈10 mJ cm−2 are typical,
corresponding to exposure times of ≈0.04 s. A combined
focus-exposure matrix, with focus offset values suggested

by simulation, was developed to optimize exposure; each
die was exposed once. Depending on desired geometry,
focus offset values were between 300 nm and 1.5 μm.
Wafers were then postbaked and developed in accordance
with simulated parameters, with typical values near the
manufacturer suggestions for postbake (≈110°C for 60 s
on hot-plate) and spray developed for 60 s in AZ 726 MIF.

Having developed the optical process, an etch process
was developed17 to transfer the resultant sinusoidal geometry
into the underlayer: in this case, the bulk silicon wafer. A
reactive ion etch process was used, with CF4 as the etchant
and CHF3 to increase selectivity to photoresist, in a 5∶1 flow
ratio. The forward power was 150 W and the chamber pres-
sure was 40 mtorr.

The reflectivity, at variable angle of incidence, was char-
acterized by an optical setup contained a tungsten–halogen
source, Horiba iHR550 infrared monochromator, collimating
silver mirror, polarizing prism, focusing silver mirror, and
silicon photodetector. The measurements were performed
using a linearly polarized collimated beam with a spectral
range spanning 400 to 1100 nm. Collected data was normal-
ized against the reflection of a flat silver mirror.

3 Results and Discussion

3.1 Exposure Simulations

The PROLITH simulation yields the expected sinusoidal pat-
tern with a reasonable fabrication window; perturbations
around the best achievable value degrade the aerial image
quality linearly and controllably. Physical inputs of reasonable
photoresist and ARC layers, reasonable mask sizes and devel-
opment times yield a variety of sinusoidal patterns; thus, there
is an acceptable tolerance in process and equipment variation.

Iterations over the line and space width of the mask yielded
changes in the structure size while still operating in the near-
field approximation. Beyond ≈700 nm, the simulated expo-
sures converged back to near-vertical sidewall profiles, as
expected. The region of interest in this work remains with
mask feature sizes approaching the illumination wavelength.

Iterations over the dose begin from half the typical value
expected for full exposure; iterations for focus begin
from −t∕2, where t is the thickness of the optical stack—
≈2.16 μm for the example developed here. This coarse iter-
ative simulation elucidates typical behavior for a photoresist
stack; the photoresist profile is then fine-tuned by iterating
predominantly over dose close to the desired profile.

Moreover, multiple exposures, at varying focal planes,
were considered in simulation. These enabled additional
parameters to capture a broader array of exposure profiles
at the expense of alignment accuracy and multipass expo-
sure. The criteria used to judge the success of the simulations
were the fidelity of the output to the intended geometry of the
structure: the top CD size, bottom CD size, pattern height,
space width, pattern curvature were taken into consideration.

It is important to underscore that the values discussed
above are all approximate, and should be used as reasonable
initial setting for subsequent experiments. For a given proc-
ess target, accurate and exact values are produced by running
a full simulation against the desired geometry. Modulation of
dose and mask linewidth can be used as coarse adjustments
to the eventual geometry, while focus offset acts as a much
more sensitive perturbation.

Fig. 1 Overlays of the developed results against the PROLITH sim-
ulation target for a number of designs. From left to right, the dose
increases from 50 to 80 mJcm−2; from bottom to top, the focus offset
(measured toward the optical system) increases from −1.2 to 0.3 μm.
The PROLITH simulation yields the expected sinusoidal pattern with a
reasonable fabrication window; perturbations around the best achiev-
able value degrade the aerial image variation.
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3.2 Photoresist Patterning, Etch Transfer

Patterning photoresist using this technique yields a variety of
controlled cross sectional profiles. Figure 2 shows a scanning
electron microscopy (SEM) cross section of photoresist,
exposed and developed according to a simulation tailored
toward a sinusoidal image. The subfigures demonstrate other
geometries that can be created with the above technique, sim-
ilarly in photoresist. An asymmetrical grating is shown with a
curved base and sharper tops. Moreover, a more extreme
example is developed: an array of sharply tipped lines.

Multiple iterations of this process yield reliable pattern
generation and transfer, as demonstrated in Fig. 1. Using
a dose–focus matrix for optimization, patterns that compare
closely to those generated in simulations are produced.

While creating patterns in photoresist is useful, far greater
utility lies in transferring these to underlayers and enabling
deposition of a coating. In Fig. 3, the transfer of the photo-
resist pattern into the silicon substrate is demonstrated, along
with a gold coating. Using the etch parameters described
above, etch selectivity within 7% of unity is achieved, yield-
ing minimal change in the photoresist aspect ratio.

3.3 Narrowband Plasmon Resonance

We used this approach to construct a surface plasmon-based
asymmetrical grating, with a decreased density of plasmon
states near the grating edge, yielding particularly narrowband

performance. Reflection spectra calculated by FDTD simu-
lation are compared to experimental measurements. The
reflectivity of the metal-dielectric sample in Fig. 3 was mea-
sured using normal incident angle of transverse magnetic
polarized probing light, and is presented in Fig. 4.

The peaks, each indicating the incident illumination cou-
pling into a surface mode, overlap to within Δλ ¼ 2 nm. The
sample demonstrated a narrow-band reflectivity minimum
for the p-polarized probe field at the wavelength of
911 nm (Fig. 4). The minimum wavelength was blue-shifted
with increasing angle of incidence. In contrast, the reflection
of s-polarized light did not demonstrate any minimum of
reflectivity at 911 nm or any other wavelength within the
measurement range. The resonance is narrow, with a full-
width at half-maximum of 19 nm, indicating a high-quality
periodic structure.

4 Conclusion
Above, the fabrication of 2.5-D periodic structures using a
one-step optical lithography process compatiblewith conven-
tional i-line tools is demonstrated. Etch transfer of the shape,
with high fidelity, into the underlying silicon is performed.

Limitations of this technique became evident during the
development of this process. Image fidelity is affected by
focus control.Moreover, technology transfer to industrial proc-
esses, using 200 mm substrates and with decreased tolerances
for resist uniformity and wafer bow, may be challenging.

While this approach has been implemented before using
electron-beam lithography,18 an approach using photolithog-
raphy enables integration with a parallel workflow, and a
reduction in fabrication cost. In the realm of all-optical tech-
niques, the aerial image modulation approach enables topog-
raphy patterning of feature sizes too large for holographic
lithography and too small for grayscale approaches.
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