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Abstract. State-of-the-art directed self-assembly (DSA) of block copolymer (BCP) methods still yield defect
densities orders of magnitude higher than is necessary in semiconductor fabrication. The defect free energy
of a dislocation pair or jog defect, one of the most common defects found in BCP-DSA, is calculated via thermo-
dynamic integration using a coarse-grained molecular dynamics model as a function of χ and the degree of
polymerization (N). It is found that χN is not the best predictor of defect free energy and that a single χN
value can yield vastly different free energies when χ and N are different. Defect free energy was highly depen-
dent on defect location relative to the underlayer, and free energy differences ∼100 kT were found among the
three possible defect locations on a 1:3 guiding pattern. It was found that increasing molar mass dispersity (Ð)
significantly reduced defect free energy. Extrapolating from Ð up to 1.5 suggests that the defect will occur in
equal proportions to the defect free state at aÐ of around 1.6 for this system. It was found that long chains tended
to concentrate near the defect and stabilize the defect. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10
.1117/1.JMM.15.2.023505]
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1 Introduction
Block copolymer (BCP) directed self-assembly (DSA) is a
technique that has been studied extensively in recent years
for use in nanofabrication because it excels in rapidly pro-
ducing nanoscale patterns with long-range order when
aligned to a prepatterned underlayer.1,2 The most common
methods to align such BCPs include using a chemically pat-
terned underlayer,3 a topographically patterned underlayer,4

or some combination of the two.5,6 Such techniques are being
engineered to be more capable of producing useful patterns
including aligned lamellae and cylinder phases that mimic
the types of patterns useful in semiconductor device fabrica-
tion, but many obstacles still exist to their practical use
industrially. One of the most critical obstacles is that of
defect density. Progress has been made toward understand-
ing the fundamental cause of these defects,7–9 including the
calculation of the defect free energy (ΔF) using a self-con-
sistent field theory model in laterally confined systems7 and
how this free energy changes as a function of guiding
linewidth.7 In the context of such laterally confined systems,
the effect of molar mass dispersity (Ð) was studied,7 but
only for binary blends, which is a poor model for the disper-
sity inherent in a typical BCP system. Work using a coarse-
grained model has studied the effect of pattern-guiding
strength on a 1∶1 pattern.8 However, current defect concen-
trations are orders of magnitude above necessary levels
for many microelectronic applications10,11 and the effects
of numerous variables, including χ (the Flory Huggins
interaction parameter), χN (where N is the degree of

polymerization), and various guiding layer properties on
defect formation are still not understood.

The study of these DSA problems can be aided greatly by
the use of computer simulations, particularly in the area of
defect modeling. Differentiating guiding pattern effects from
inherent BCP defects and from particle or other contaminat-
ing factors is very difficult experimentally. Furthermore, the
identification of the equilibrium defectivity and separating
that from kinetic aspects of defect formation and annihilation
is difficult, but crucial to understanding BCP defects and
removing them in BCP-DSA processes. Simulations can
much more easily achieve these goals. By using thermody-
namic integration, coarse-grained molecular dynamics sim-
ulations can provide calculation of the free energy difference
between two states, although a reversible path between them
must be formulated. The free energy of a defect can be cal-
culated as a function of various polymer and underlayer
properties to provide insight into what property variations
might minimize the occurrence of defects. This insight can
then be applied to focus experimental investigations.

This work will study one of the most common defects
found in BCP-DSA processes, a dislocation pair, or jog
defect. This defect is shown in Fig. 1 and has been observed
in various experiments7–9,12,13 and in our own simulations. A
dislocation pair (a dislocation is the “Y” structure in cyan in
Fig. 1) can be separated by different numbers of lamellae, but
this work will study a defect separated by a single domain,
which is quite commonly seen in BCP-DSA.

While such defects occur for various pattern types and
various polymers, a good understanding of how these pat-
terns and polymer properties actually affect defect density
is lacking. The defect density (nd) can be described as
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EQ-TARGET;temp:intralink-;e001;63;602nd ≈ a−2c exp

�
−
ΔF
kT

�
; (1)

where ΔF is the free energy between the defective state and
the defect free state, k is the Boltzmann’s constant, T is the
absolute temperature, and a2c is the area of the defect (about
the repeat distance of the lamellae squared).7–9,14,15 Because
of the exponential dependence of defect levels on the defect
free energy ΔF, accurate estimations of this parameter are
critical to understanding anticipated defect levels in DSA
processes.

2 Models and Methods

2.1 Coarse-Grained Model

A coarse-grained polymer model has been used and is
described in detail elsewhere,16,17 but a brief description
will be given here. Molecules are coarse-grained by model-
ing four monomeric units as a single bead. Four monomers
were chosen because this approximately corresponds to the
statistical segment length of polystyrene and poly(methyl
methacrylate), two common polymers studied in BCP
DSA. Beads were connected using harmonic potentials. A
harmonic angle potential was also used between every set of
three consecutively bonded beads to prevent collapse due to
nonbonded interactions. Every pair of beads that does not
participate in the same angle potential (i.e., every bead
that is on a different molecule or that is more than two
bonds away) interact via a nonbonded potential similar to
a Lennard–Jones potential as

EQ-TARGET;temp:intralink-;e002;63;269ENonbonded ¼ εij

��
σij
r

�
8

− 2

�
σij
r

�
4
�
: (2)

The parameter εij is the depth of the potential well, which
corresponds to the strength of the interaction and to cohesive
energy density. σij is the location of the minimum of the
potential, which controls the average spacing between non-
covalently bonded beads and the density of the system. The
exponents in Eq. (2) are lower than in the Lennard–Jones
potential expression because these fit the coarse grain poten-
tial well and reflect the averaging effect of the coarse-grained
potential. In this work, the parameters for both A and B
blocks are chosen to roughly reproduce the density and
segment distribution of polystyrene. εAA and εBB are set
to 0.5 kcal∕mol, while σAA, σBB, and σAB are set to
1.26 nm. The equilibrium bond length used for both A
and B polymers was 0.82 nm with a harmonic strength of

100 kcal∕mol · nm2. The equilibrium angle used for both
A and B polymers was 2π∕3 radians (120 deg) with a har-
monic strength of 5 kcal∕mol · radian2. Simulations were
run at 500 K, a realistic thermal anneal temperature for
DSA-BCP systems, with a time step of 0.05 ps. Further dis-
cussion of these parameters can be found elsewhere.16,18,19

Because εAB describes the interaction between unlike blocks,
this parameter is used to determine the value of the Flory–
Huggins enthalpic interaction parameter χ. To determine χ,
we fit the structure factor (a component of the x-ray diffrac-
tion profile) to Leibler’s theory for BCP scattering similar to
its extraction from the experimental results.20,21 The εAB − χ
relation is extrapolated from this fit in the mixed state to
lower εAB values. This gives a relation for χ as a function
of εAB, N, and volume fraction of the A block which is
important in understanding our results relative to other cal-
culations that primarily describe their potentials with the χ
parameter. Details of this method can be found
elsewhere.22 Justification for the linear extrapolation follows:
χ is defined by Flory23

EQ-TARGET;temp:intralink-;e003;326;532χ ¼ zΔw∕kT; (3)

where z is the coordination number, Δw is the exchange
energy, k is the Boltzmann constant, and T is the temperature
of the system. The exchange energy, Δw, is defined as the
energy penalty for replacing an A − A or a B − B interaction
with an A − B interaction

EQ-TARGET;temp:intralink-;e004;326;446Δw ¼ wAB −
1

2
ðwAA þ wBBÞ; (4)

where wAB is the interaction energy between an A bead and a
B bead. Since the interaction energy in this model is defined
by the nonbonded potential parameter ε, Δw can be defined
for our system as

EQ-TARGET;temp:intralink-;e005;326;361Δw ¼ εAB −
1

2
ðεAA þ εBBÞ: (5)

This shows that Δw scales linearly with changes in εAB. As
long as the density of the A − B interface does not signifi-
cantly perturb the system, z, the coordination number (the
number of beads a single bead interacts with), will remain
a constant. Since kT is a constant, χ will scale linearly
with εAB until z is perturbed by density variations at the A −
B interface. All simulations were run using the HOOMD-
Blue software package24,25 and visualized in VMD.26 The
natural parallelizability of MD simulations and the GPU
optimization of HOOMD allows simulations on a GPU
enabled computer to run up to 200 times faster than a desktop
computer (Intel Core 2 Duo ∼2 GHz, 2GB RAM).

The natural repeat distance L0 of each set of χ and N is
measured using the structure factor, which provides similar
information to that of a scattering experiment.22,27 The values
of L0 used here are shown in Fig. 2.

2.2 Thermodynamic Integration

A method similar to that used by de Pablo and coworkers8

and Müeller and coworkers28 was used to determine free
energy changes. The free energy difference between two
states can be calculated as

Fig. 1 Top bottom image of the defect type studied in this paper. This
is a common defect found in the literature.7–9,12,13 The A beads are
shown in white, while the B beads are shown in cyan.
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EQ-TARGET;temp:intralink-;e006;63;540ΔFa→b ¼
ZuB
uA

�
δH
δu

�
du: (6)

H is the classical Hamiltonian of our model, u is any param-
eter that when varied defines a continuous, thermodynami-
cally reversible path between state A and state B, and the
brackets h·i; denote a thermodynamic average, that is the
average value at equilibrium. The states used were a dislo-
cation pair or jog defect (Fig. 1) and a defect free ordered
lamellae state. Instead of trying to define a reversible, con-
tinuous path between a well-aligned lamellar state and a

defect free state, it is easier for our model to use two different
paths, i.e., a path from a mixed state to a lamellar state and a
path from a mixed state to a defective state. Therefore in
order to compare the defective and defect free states, two
simulations were run as described in Fig. 3: one from a
mixed state to a defect free lamellae state, which yields the
free energy difference between the mixed state and the defect
free state (ΔFDefectFree−Mixed), and another simulation from
a mixed state to a defective state, which yields the free
energy difference between a mixed state and a defective
state (ΔFDefect−Mixed). Then

EQ-TARGET;temp:intralink-;e007;326;631ΔFDefect−DefectFree ¼ ΔFDefect−Mixed − ΔFDefectFree−Mixed:

(7)

Both ΔFDefect−Mixed and ΔFDefect−Free−Mixed were calculated
using three branches of the MD simulation. The first branch
is used to order the mixed polymers into the desired mor-
phology. This was done using an external potential, which
assigns an energy to beads based on their type and position
within the simulation. In the case of the defect free state, the
external potential energy was described as

EQ-TARGET;temp:intralink-;e008;326;510Udef−free ¼ A tanh

�
cos

�
2πx
L

	
2πw

�
; (8)

where A is the strength of the potential, x is the position in
the x axis of the bead, w is the width of the interface of
the potential, and L is the repeat distance of the potential.
The defect potential is created using the same equation,
except the center portion is rotated 45 deg.

Fig. 3 Schematic of the method used to calculate the defect free energy. Two simulations are run: one
from the mixed to the defective lamellar state and one from the mixed to the defect free lamellar state.
Each of these simulations yields the free energy difference between the mixed state and the correspond-
ing final state. The difference between the two free energies is the free energy difference between
the defect and the defect free state. Each simulation contains three branches over which a free energy
difference is calculated. The first branch orders the system from the mixed state using an external
potential, the second changes χ, and the third turns off the external potential.

Fig. 2 Plot of L0 dimensions as used in this work. Dimensions were
measured using the structure factor.22,27
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EQ-TARGET;temp:intralink-;e009;63;752

Udef ¼

8><
>:

Uin −0.75L0 < x < 0.75L0

−0.5L0 < y < 0.5L0

Uout otherwise

; (9)

EQ-TARGET;temp:intralink-;e010;63;696Uin ¼ A tanh

0
@cos

n
2π½x cosðπ∕4Þ−y sinðπ∕4Þ�

L0

o
2πw

1
A; (10)

EQ-TARGET;temp:intralink-;e011;63;643Uout ¼ A tanh

"
cos

�
2πx
L0

	
2πw

#
: (11)

This produces the dislocation pair defect found in both
our simulations and in published experimental results.7–9,12,13

The integral from Eq. (6) was carried out where the reversible
path (u) is defined by changes in the strength of the external
potential, A. This integral, which yields ΔF1 from Fig. 3, is
shown in Eqs. (12) and (13) for the defect free case.

EQ-TARGET;temp:intralink-;e012;63;530ΔF1 ¼
ZAmax

0

�
δUdef−free

δA

�
dA ¼

ZAmax

0

�
Udef−free

A

�
dA; (12)

EQ-TARGET;temp:intralink-;e013;63;473ΔF1 ¼
ZAmax

0

*
tanh

"
cos

�
2πx
L0

	
2πw

#+
dA; (13)

where Amax is 2.6. The defective case is identical except that
Udef is substituted for Udef−free.

The integrals [Eqs. (12) and (13)] were evaluated by
numerically increasing A in 100 fixed-increment steps
from 0 to Amax, which in this case was 2.6. At each step,
an MD simulation is run at the new value of A until the sim-
ulation has equilibrated, and the average value at equilibrium
is taken and used in integrating Eq. (13). In order to confirm
the amount of time required to run the simulation at each step
in the ramp up of A, multiple simulations were run for vari-
ous lengths and the free energy integration was performed, as
shown in Fig. 4. Short times showed significant deviations
from the results at long times, because a short integration
time does not allow the system sufficient time to equilibrate,
making the path irreversible. At long times, the simulations
are able to reach equilibrium at each step, and therefore the
path is reversible and the measured free energy approaches a
constant value. A value of 320,000 time steps per step in A
was found to be sufficient and therefore was chosen to be
used for the remainder of the paper. In Fig. 4 initially the
value of the integrand is close to zero while the system is
not well ordered. As the system phase separates due to
the increasing strength of the external potential, the value of
the integrand begins to approach a constant value. Figure 4
shows a sharp bend at A ∼ 0.4. At this point, the system is
mostly already phase separated, and the remainder of the
simulation primarily consists of decreasing the interfacial
roughness of the BCP.

Once the BCP has been ordered in the first branch of the
simulation, χ (which was initially kept at zero during the first
branch by setting εAB ¼ εAA ¼ εBB) must be increased. The
starting condition had a χ of 0 so that the initial equilibrium

state of the system was a well-defined, well-mixed state. In
our model, χ is controlled by changing only εAB, so εAB was
varied from 0.5 kcal∕mol (χ ¼ 0) to whatever value was
desired, allowing the defect free energy to be calculated as
a function of χ. Equation (6) was then integrated where u is
now εAB, resulting in Eq. (14). This results in ΔF2 from
Fig. 3.
EQ-TARGET;temp:intralink-;e014;326;445

ΔF2 ¼
ZεABFinal

0.5

�
δUnonbonded

δεAB

�
dεAB ¼

ZεABFinal
0.5

�
Unonbonded

εAB

�
dεAB;

(14)

EQ-TARGET;temp:intralink-;e015;326;370ΔF2 ¼
ZεABFinal

0.5

��
σAB
r

�
8

− 2

�
σAB
r

�
4
�
δεAB: (15)

Unonbonded is used because χ is changed via εAB and the non-
bonded potential is the portion of the Hamiltonian in which
εAB appears. The value εABFinal is the value of εAB that yields
the desired χ. This value will be less than the value of
εAB ¼ 0.5, which yields χ ¼ 0. The number of time steps
per step in εAB was varied and the integrand measured as
for branch 1. The results are found in Fig. 5. In this case,
even very low numbers of timesteps per step in εAB yield
the same result as very long runs. This is because there is
little to no overall morphological change in this branch as
there was in branch 1. This integration was done in 50
steps and run for 40,000 ps for each step in εAB.

The third and final branch of each simulation gradually
turns off the external potential. Equation (6) was then inte-
grated where u is A as A decreases from 2.6 to 0. This is
described in Eq. (16).

EQ-TARGET;temp:intralink-;e016;326;142ΔF3 ¼
Z0
Amax

�
tanh

�
cos

�
2πx
L

	
2πw

��
dA: (16)

This is the same as Eq. (13) except that the integration
limits have been switched. The same analysis as was done

Fig. 4 Plot of the integrand of Eq. (13) as A is increased. As the num-
ber of timesteps per step in A is increased, the curves converge.
A value of 320,000 was used to ensure accuracy and reasonable
simulation times.
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in Fig. 4 is performed, the results of which are shown in
Fig. 6. The integrand of Eq. (16) was calculated as a function
of A as A was decreased for various numbers of time steps
per step in A. Very low values of time steps per step in A
show significant deviations, but values of 20,000 and greater
all produce the same integrand. This is consistent with the
smaller morphological changes in branches two and three
relative to branch one. The first branch was changed
from a mixed state to an ordered state, while the second
branch underwent almost no morphological change as χ
was increased. This third branch, where the external potential
is removed but χ is kept high, undergoes some minor mor-
phological changes because there are some slight differences
between the form of the external potential and the true defect.
Therefore this integration was done in 50 steps and run for
40,000 ps for each step in A.

The free energies of each of these branches for both the
mixed to defect and mixed to defect free simulations were
calculated. ΔF1, ΔF2, and ΔF3 are summed together to
yield ΔFDefect−Mixed and ΔFDefectFree−Mixed as in Eq. (7).

3 Results and Discussion
Various system sizes were simulated and the free energies
were calculated to determine what system size was sufficient
to accurately calculate the aforementioned free energy

change. Box sizes in the x direction, the dimension
perpendicular to the aligned lamellae, were restricted to mul-
tiples of L0 to preserve periodicity and commensurability
with the natural pitch of the BCP lamellae. Whenever this
dimension dropped to 3L0 or less, then the defect became
severely distorted and free energy could not be calculated.
Similar distortions occurred when the y dimension decreased
to very low values. Once the dimensions of the periodic box
were greater than or equal to 5L0 in the x dimension and 3L0

in the y dimension, there did not seem to be a dependence of
defect free energy on simulation area as shown in Fig. 7. This
is very similar to box size constraints in the work of Nagpal
et al.8 In these free energy measurements, there is some run
to run variation, which is shown using 90% confidence inter-
val error bars. The variation is likely caused by incomplete
sampling in the given timeframe of calculation. If a simula-
tion is temporarily trapped in a transition state, then that state
will likely be oversampled causing a deviation in the calcu-
lation for that run. On average, either over very long simu-
lations or over many simulations, the sampling would
average out to be correct, but in finite runs and simulation
time, sampling will not be perfect.

In order to determine the effect of N and χ on the free
energy of dislocation pairs, fully periodic simulations
were run with box dimensions of 5L0 by 3L0 in the x
and y dimensions and 15 nm in the film depth dimension.
L0 dimensions varied from ∼8.3 to ∼23.1 nm (because of
variations in N and χ). N was varied from 64 monomers
to 192 monomers at various χ values. The results are plotted
as a function of χN in Fig. 8. Defect free energy is usually
investigated and reported as a function of χN, as it is done by
Takahashi et al.7 However, as can be seen in this work (see
Fig. 8), when both N and χ are varied the defect free energies
do not fall onto a single curve as a function of χN, but in fact
show great disparities in defect free energy at a single χN.
Linear extrapolations of the data in Fig. 8 yield intercepts
(where the free energy of the defect and defect free state
are equal) of χN ∼ 2 to ∼11 for each N shown, but each
set of N only has 2 to 5 data points so the fits are subject
to some error. In addition, values of χN in this work gener-
ally stay above a χN of 20, in part because defects very near

Fig. 6 Plot of the integrand of Eq. (16) as A is decreased. Values of
20,000 timesteps per step in A and higher yielded the same integrand.

Fig. 7 Free energy of dislocation pair defect as a function of simula-
tion size. Smaller simulation sizes resulted in deformed defects and
made it impossible to calculate defect free energy. As long as the box
size was at least 5L0 by 3L0 (area ¼ 2160 nm2), the defect free
energy did not vary significantly. The error bars shown are 90% con-
fidence intervals over four or more simulations.

Fig. 5 Plot of the integrand of Eqs. (14) and (15) as εAB is increased.
All values of time steps per step in εAB yield the same integrand.
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the ODT had a tendency to very quickly heal themselves
because of the very small or nonexistent barriers to defect
healing.22,29 However, the fact that the defect free
energy approaches zero as the ODT is approached
(χNODT ∼ 10.5) makes sense because as the drive to phase
separate becomes small, the energetic penalties associated
with the defect will become less and less important.

The size of the defect, when the thickness is fixed, as it is
here, scales with L2

0, and so one might expect that the defect
free energy would scale with χL2

0. The size of the defect
scales with L2

0 while the penalty for the defect might
scale with χ. However, as seen in Fig. 9(a), this scaling does
not collapse the data to a single line. A second explanation
for the variation might be that ΔF scales with the increase in
interfacial energy due to an increase in interfacial area due to
the presence of the defect. The increase in interfacial energy
can be represented by χΔI, where ΔI is the difference in the
A − B interfacial area between the defective and defect free
state. The interfacial area between A and B lines increases
linearly with L0 as

EQ-TARGET;temp:intralink-;e017;63;317

ΔI
Lthick

¼ π

2
L0 þ 2

ffiffiffi
2

p
L0 − 4L0; (17)

where Lthick is the thickness of the simulation. The first term
refers to the interfacial area of the two terminated ends mod-
eled as semicylinders. The second term refers to the interfa-
cial area of the slanted lines in the middle of the defect, while
the third term is the interfacial area of the defect free state
within the hypothetical defect area. While this equation
ignores some of the additional complexities of the disloca-
tion pair defect, it is a good first-order approximation and
shows that all terms scale with L0. The penalty for this
extra-interface will scale with χ, so a scaling of χL0 would
be expected if this were the only factor. However, as can be
seen in Fig. 9(b), this scaling also fails to explain all of the
variation between different χN values.

When the same data are plotted as a function of solely χ as
in Fig. 10, the data appear to collapse to a single curve. This
is very surprising as it seems L0, and therefore N (which L0

depends strongly) would be important as discussed above.
There may be competing factors that appear to reduce the
effect of N. For example, one might speculate that small
chains may be stretched or compressed at the bends more
than larger chains, which would increase the ΔF for low
N, but the effect of L0 (which scales with Nα where α is
between 2∕3 and ∼1, depending on the value of χN30)
increases ΔF for highN. These two factors would counteract
each other, perhaps canceling each other out entirely. The
idea that small chains are stretched or compressed more at
the bends may be supported by the result that in polydisperse
simulations, large chains concentrate near the bends and
actually smooth the bends out some. This is shown later
in this work in Fig. 14.

In order to produce smaller features, higher χ and lower N
materials are required to reduce the associated pitch. At a
similar χN value, but with a lower N and a larger χ, this
data suggest the defect free energy will increase and there-
fore intrinsic defects will decrease. Previous work has
shown that the energy barrier to defect removal is largely
determined by χN regardless of N22,29 and decreasing N
will only speed up defect removal by increasing diffusive
rates.22 That is, keeping χN constant and reducing N will
increase defect annihilation rate as well as decrease the num-
ber of stable defects that will form. This means that future
generations of DSAwill likely suffer from fewer defect prob-
lems, assuming similar quality underlayers can be made for

Fig. 8 The defect free energy as a function of χN. Overall, ΔF
increases with χN, but there is a significant change with N. Defect
free energy approaches 0 as χN approaches the ODT. Error bars
represent 90% confidence interval.

Fig. 9 Defect free energy plotted versus (a) χL20 and (b) χL0. Error bars are 90% confidence intervals.
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smaller features. Comparing the calculations here to defect
densities for a known BCP may be useful. Processes using
polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA),
the most commonly studied BCP for DSA, have obtained
defect densities on the order of 1 defect cm−2.10

Extrapolating a fit to the data in Fig. 10 to a χ value of
0.04 (approximately the χ for PS-b-PMMA31) and using
Eq. (1), a defect density of ∼0.001 defects per cm2 is
obtained [using ð10 nmÞ2 for the defect size]. However, this
calculation does not account for imperfection in the guiding
layers, the BCP, or the processing environment, which could
potentially increase the defect density by several orders of
magnitude.8 Accounting for these factors, and given the cur-
rent state-of-the-art, experimentally achieved defect densities
and the noise in this data, this calculated intrinsic defect den-
sity of PS-PMMA seems reasonable. Because the depend-
ence of defect density on free energy is so strong, even a
slight increase in χ and therefore in defect free energy results
in defect densities that become vanishingly small.

The above results are obtained using fully periodic sim-
ulations so that the results are independent of guiding pat-
tern. In order to explore the effect of guiding layers on
defect free energy, thin film simulations were run. A thin
film of BCP was placed over top of and in contact with a
guiding layer composed of the same beads that compose
the thin film of BCP. The underlayer was made to model
a brush polymer covalently tethered to a hard substrate, as
used previously.17 An underlayer with 2× density multipli-
cation, or a ratio of pinning stripe width to background
region width of 1∶3 was used. These underlayers are com-
posed of a pinning stripe that is preferential to one block and
is 0.5 L0 wide and a background region that is 1.5 L0 wide.
The LiNe process uses a similar pattern.3 Previous work by
Nagpal et al.8 studied the effect of underlayer interaction
strength with the film in the context of at 1∶1 pattern,
that is alternating stripes each of width L0∕2. This type of
pattern is not very useful in the context of semiconductor
fabrication because the smallest feature size has already
been achieved in the patterning of the underlayer (i.e., it
does not multiple the density of the pattern). In industrially
relevant processes at least one of the patterned stripes is
wider than L0∕2 and the density of the pattern is multiplied
via BCP-DSA. In processes, such as the LiNe process, the
composition of the background region is varied to offer an

underlayer that is more neutral overall to prevent horizontal
lamellae from forming.19 Here, the effect of defect placement
relative to the guiding pattern and the composition of the
background region in the guiding pattern was measured,
where the background region composition (Cb) refers to
the percent of the background region composed of the
same bead that compose the pinning stripe. So, if the pinning
stripe is composed of A beads, then Cb ¼ 0% means the
background is all B beads, while Cb 50% means the back-
ground region is equally composed of A and B beads. The
dislocation pair defect can occur at three places on such an
underlayer as shown in Fig. 11. In the “A placement,” the
defect is centered on the pinning stripe. In the “B placement,”
the pinning stripe is on the edge of the defect. The pinning
line is shown under the left side of the defect in Fig. 11, but
because the defect is symmetric this is identical to putting the
stripe under the right side of the defect. In the “C placement,”
the defect has the pinning stripes adjacent to both sides of the
defect but not directly under the defect. Although the pinning
stripes change from the B block, to the A block, and to the B
block in Fig. 11, the A and B blocks are energetically
identical so it is merely an expedient to keep the defect
unchanged and centered in the simulation volume. Defect
free energies were calculated on these underlayers through
various background compositions and the results are shown
in Fig. 12 for N ¼ 64, χN ¼ 35, and a film thickness of L0

(11 nm for this specific N and χN).
The defect location relative to the pinning stripes makes a

significant difference in the measured free energy. When the
pinning stripe is under the center of the defect (A placement),
the free energy penalty is highest, followed by the pinning
stripe being under one side of the defect (B placement)
and finally pinning stripes that surround the defect (C place-
ment). This effect can be explained by looking at how many
lines the pinning stripe is influencing. For the A case, the
pinning stripe interacts directly with one line (the line
above it) and indirectly with the two adjacent lines. On
the other hand, while in the B case the defect still directly
interacts with one line, it only indirectly interacts with
one adjacent line, which decreases the influence of the pin-
ning stripe on the defect free energy. Finally, the C case does
not directly influence any lines participating in the defect, but
indirectly influences two adjacent lines, which further lowers
the free energy of the defect.

Fig. 10 (a) The defect free energy as a function of χ. Defect free energy scales very well with χ with little
dependence on N. Error bars show 90% confidence interval. (b) Fit line to the same data as in (a) with a
95% confidence interval on the fit shown as red lines.
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The large differences in free energy as a function of defect
placement relative to the underlayer (∼100 kT) on average
means that the vast majority of defects will likely occur
between pinning stripes (C placement) and not over top
of them, although it appears that at higher background com-
positions defects with one edge over the pinning stripe (B
placement) may appear in similar frequency. This result is
significant because it is difficult to experimentally observe
where defects form relative to the underlayer structure.
At every background composition, the defects have very
large penalties to form directly over the pinning stripe (A
placement).

The effect of background region composition is not as
clear. In the case of the A placement, background composi-
tion appears to have no significant effect on the free energy,
while in the case of the B placement free energy appears to
decrease with increasing Cb, and in the C placement free
energy appears to increase with increasing Cb. However,
the error bars are fairly large and make it difficult to
claim such dependence with great certainty. From the sim-
plest standpoint, where only the enthalpic interactions
between the film and the underlayer are considered, the
effect of Cb on the B placement makes sense. As Cb

increases, the contrast (i.e., difference in composition)
between the pinning stripe and the background region
decreases and therefore decreases the guiding strength of
the pattern. This would result in the defect free energy
decreasing, as it is seen here. However, by this logic the
defect free energy for the A placement should also decrease
as Cb increases, but it does not. The C placement is different
because no part of the defect directly touches the pinning

stripe in this simplified view, so the pinning stripe would
not impose a driving force to fix the defect. Any effect it
does have will be through some less obvious means. This
all suggests that something more complicated than the sim-
ple enthalpic interactions of the film with the underlayer is
required to understand the effect that Cb has on ΔF. In pre-
vious works, it has been found that the shape of the interfaces
is strongly affected by the underlayer composition,32 and
changes at these interfaces have proven important in under-
standing the kinetics associated with defect removal.31,32 In
addition, these defects have a tendency to bend the lamellae
slightly, even lamellae that are not immediately part of the
defect (see Fig. 1: the first white lamellae not part of the
defect are significantly bent) and the effect that this bend
has on defect free energy is unclear. It may be that these
interfacial changes are important to the defect free energy
in these cases.

It should also be pointed out that these simulations have
defect free energies less than half that of their periodic sim-
ulation counterparts (compare Fig. 12 with N ¼ 64 and
χN ¼ 35 in Fig. 8). This is likely caused by the removal
of interaction by the addition of the interfaces. Instead of
having a dense polymer melt above and below the simulation
volume, there is vacuum on one side and a thin brush on the
other. This removes a large number of interactions that would
affect the energy calculation. In addition, the density of the
film near the free interface is depressed from its bulk density,
further decreasing the overall number of interactions. Also,
the fully periodic simulation is not analogous to a thin film
on an unpatterned substrate because there are no interfaces,
just interactions with the other side of the simulation volume.
This means that the defect or defect free state essentially
reinforces itself at the edge of the volume. The appearance
of the film–underlayer interface and the film–vacuum inter-
face plays an important role in defect free energy. This
interface also proved critical in the study of defect healing
kinetics.10,31,33 We have also found that in some cases,
defects that occur spontaneously have been accompanied
by a local reduction in film thickness, but a thorough study
has not yet been undertaken. This may also mean that film
thickness plays an important role in defect free energy, but
that was not directly studied here.

All simulations to this point were run with a molar mass
dispersity (Ð) of 1, but in practice all BCPs have some molar
mass dispersity. While it is expected that Ð can increase the
defectivity of a BCP film, this effect has not been explored in
much detail. Previous work by Takahashi et al.7 studied the
effect of Ð (using binary blends of polymers) on the defect
free energy in laterally confined BCPs. They found a
decrease in ΔF with Ð, and an interesting drop even at
low Ð as the ratio of masses of the blended polymers

Fig. 12 Defect free energy as a function of background composition
and defect location relative to the underlayer for N ¼ 64, χN ¼ 35,
and a film thickness of L0 (11 nm). Error bars refer to 90% confidence
interval about the mean.

Fig. 11 Images of the three possible defect locations on a 1∶3 guiding pattern.
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increased. However, using binary blends of polymers is very
different from using a full distribution of lengths. Therefore,
the effect that Ð had on defect free energy was investigated
using these simulations. Simulations using the B placement
at XN ¼ 64 (XN is the number average degree of polymeri-
zation) and χN ¼ 35 were built for various Ð using a
Wesslau distribution with chains randomly dispersed
through the simulation. Each chain was forced to have a vol-
ume fraction of 50% A and B. The resulting defect free ener-
gies are shown in Fig. 13. There is a significant reduction in
free energy with increasing Ð, to the extent that the defect
free energy may approach or cross zero in value if Ð were
increased further. This implies that the defective state is as
likely (ΔF ¼ 0) or more likely (ΔF < 0) than the defect free
state at very high Ð. At more commonly used Ð values
(Ð ¼ 1.1 or 1.2) the drop is still significant. At a Ð of
1.2, the defect free energy has dropped almost 40% and
would correspond to orders of magnitude increase in defect
density. The work by Takahashi et al.7 saw a greater propor-
tional drop at low Ð, but this drop in ΔF did not approach 0
at high dispersity. This is likely caused by the fact that they
used binary blends. In that work, it was found that larger
differences in chains lengths lead to larger drops in ΔF.
For our model with a full distribution, larger dispersities
will include chains lengths with larger differences in length
between them and so the effects of both larger differences in
chain lengths and a broader distribution of such chains
are felt.

Figure 14 shows the locations of beads on long chains
(N > XN where XN is the average chain length) and short

chains (N < XN) in a defect in a high dispersity case.
There appears to be a higher concentration of long chains
in the center of the defect than in the surrounding defect
free areas. In addition, the defect seems more rounded
and less angular than defects at lower dispersity. The distri-
bution of various chain lengths appear to allow variations in
line width (caused by variations in concentrations of chain
lengths34) that allow for smoother lines. This may stabilize
the defect in a way similar to the way homopolymer addi-
tions stabilize bends in patterned block polymers.35 This
would imply that homopolymer additions would increase
defect density at equilibrium.

It should be pointed out that the external potential restricts
almost all movement between lines so that chains are
restricted to their original lines. They can move along an
interface easily, but moving across an interface to another
line would be a very rare event because of the high energetic
penalty associated with moving a bead through the opposite
typed domain. This has the effect of limiting variations in
volume fraction and chain lengths from line to line through
time. If at the actual lowest free energy state, the concentra-
tion of one length of chain is different near the defect as com-
pared to far away from the defect, this distribution may not
be properly sampled in the current simulations. This suggests
the values calculated in Fig. 13 may be over estimates of the
true defect free energy. A systematic examination of chain
redistribution would discover if the lowest free energy
state did redistribute some chains lengths closer to or farther
from the defect. For example, creating a branch in the
thermodynamic integration scheme that concentrated long
or short chains near the defect, or increased the dispersity
locally near the defect (but did not affect the overall disper-
sity) would help determine the distribution that would yield
the lowest free energy state. However, such an examination
was not performed here so the calculations show in Fig. 13
should be viewed as a maximum defect free energy.

4 Conclusions
The defect free energy of a dislocation pair or jog defect is
calculated via thermodynamic integration using a coarse-
grained molecular dynamics model as a function of χ and
N. It was found that χN is not the best predictor of defect
free energy and that a single χN value can yield vastly differ-
ent free energies when χ and N are different (although their
product is identical). This means that higher χ systems that
are being produced to allow for smaller feature size DSA
will likely have a lower equilibrium intrinsic defect density.
Measurements of defect densities are reasonable for the

Fig. 13 Defect free energy as a function ofÐ forN ¼ 64 and χN ¼ 35.
The “B” defect location was used.

Fig. 14 Distribution of chain lengths for Ð ¼ 1.5, N ¼ 64, and χN ¼ 35. Each point represents a single
bead. The long chains tend to congregate near the defect.
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oft-studied PS-PMMA. Defect free energies were measured
as a function of defect placement relative to the underlayer
and as a function of background composition. The effect of
background composition was unclear but the defect free
energy was highly dependent on defect location relative to
the underlayer. Free energy differences of ∼100 kT were
found between the three possible defect locations on a
1∶3 guiding pattern. The effect of Ð on defect free energy
was also studied. It was found that Ð significantly reduced
defect free energy. Long chains in a polydisperse sample
tended to concentrate near and stabilize the defect.
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