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Abstract. Modern steppers and scanners have a projection
lens whose numerical aperture �NA� can be varied so as to
optimize the image performance for certain lithographic fea-
tures. Thus a variable fraction of the aberrations is actually
involved in the imaging process. In this letter, we present a
concise formula for the NA scaling of the Zernike coeffi-
cients. In addition, we apply our results to the Strehl ratio.
© 2006 Society of Photo-Optical Instrumentation Engineers.

�DOI: 10.1117/1.2345672�

Subject terms: optical lithography; NA scaling; Zernike coefficients;
Strehl ratio.

Paper 06045LR received Jun. 20, 2006; revised manuscript re-
ceived Jul. 31, 2006; accepted for publication Jul. 31, 2006; pub-
lished online Sep. 8, 2006.

1 Introduction
It is well known that different lithographic features have
different optimal settings of the numerical aperture �NA�
and illumination condition.1,2 Typically the depth of focus
or the process latitudes are optimized. To achieve the opti-
mal settings, modern steppers and scanners have a projec-
tion lens with a variable numerical aperture, where the NA
value can be reduced to about 70% of its maximum value.
As a consequence, a smaller fraction of the lens pupil and a
corresponding smaller fraction of the phase aberrations is
actually involved in the imaging process.

In the literature �see Ref. 3 for a survey� the problem of
computing the aberration Zernike coefficients of scaled pu-
pils has been discussed at various places. The recent result
of Dai3 gives the Zernike coefficients of the scaled pupil in
terms of those of the unscaled pupil in analytic form �see
Eq. �18��.

In this letter we give an alternative expression for Dai’s
result. Our main result in Eq. �4� agrees mathematically
with Dai’s Eq. �18� but has the advantage that it is very
simple and direct in terms of Zernike polynomials. Thus it
leads to the simple and explicit results in Eqs. �7� and �9�
from which the sensitivity of the aberration coefficients and
Strehl ratios can be assessed when NA is close to its maxi-
mum value. The short and elegant proof of our main result
in Eq. �4� is given in Appendix A.
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2 Zernike Coefficients of Scaled Pupils
We consider a pupil function

P��,�� = exp�i���,��� , �1�

on a unit disk 0���1 with real phase �, and we assume
that � is expanded as a Zernike series according to:

���,�� = �
n,m

�n
mRn

m���cos�m�� , �2�

where m and n are integers with n−m being even and �0,
and Rn

m��� denotes the Zernike radial polynomial4 of azi-
muthal order m and degree n. For simplicity we only con-
sider cosin terms. Scaling to a smaller pupil with relative
size �=NA/NAmax�1 means that we have to expand the
scaled phase ���� ,�� into a Zernike expansion:

����,�� = �
n,m

�n
m���Rn

m���cos�m��,

0 � � � 1, 0 � � � 2� . �3�

The problem is how to express the Zernike coefficients
�n

m��� of the scaled pupil function in terms of the Zernike
coefficients �n

m of the unscaled pupil function. In the Ap-
pendix A we prove our main result:

�n
m��� = �

n�

�n�
m �Rn�

n ��� − Rn�
n+2����, n = m,m + 2, . . . , �4�

where the summation is over n�=n ,n+2, . . ., and where we
use the convention that Rn

n+2�0. We note that �1� the en-
tries Rn�

n ���−Rn�
n+2��� do not depend on m; we consider them

only for n ,n�=m ,m+2, . . ., and �2� �n
m��=1�=�n

m since all
involved Zernike polynomials, except Rn

n+2����0, equal 1
at �=1.

3 Examples and Sensitivity Analysis
Figure 1 shows an example where we scale low-order coma
�3

1��� with �3
1=2��0.016� and �5

1=2��0.016�. For this spe-
cial case, Eq. �4� and Dai’s Eq. �18� become

�3
1��� = �3

1R3
3��� + �5

1�R5
3��� − R5

5���� �5�

and

�3
1��� = �3��3

1 + 4�5
1��2 − 1�� , �6�

respectively. Both equations give an identical result, as
R3

3���=�3 and R5
3���−R5

5���=4�3��2−1�.
A consequence of Eq. �4� is that

	 ��n
m

��
	

�=1
= n�n

m + 2�n + 1���n+2
m + �n+4

m + . . . � . �7�

Equation �7� shows a significant sensitivity of �n
m��� when

� is slightly below its nominal value of 1, especially when
high-order aberrations are present. In our example we ob-
tain a relative sensitivity 1 /���� /��� of 11, indicating that
the NA value should be specified to 10−3 accuracy when the
required coefficient accuracy is 1%.

4
The Strehl ratio is approximated as:
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 1 − �
n,m

��n
m�2

	m�n + 1�
�8�

in which 	0=1 ,	1=	2= . . . =2 and the term with n=m=0 is
omitted. A consequence of Eq. �7� is that

	 �S

��
	

�=1
= 2�

n,m

��n
m�2

	m�n + 1�
− 2�

m

1

	m
��

n

�n
m�2

= 2�
�
disk
2 − 
�
rim

2 � , �9�

where the two averaging operations are over the whole disk
0���1 and the rim �=1, respectively. Figure 2 shows the
dependence on � of the Strehl ratio in the case of a mixture
of low- and high-order spherical aberration: �4

0=2��0.02�
and �6

0=−2��0.02�, where the scaled Strehl ratio S��� is
calculated by combining Eqs. �8� and �4�. This result com-
pares well with the numerical calculation obtained from the
lithography simulator SOLID-C.5 Intuitively it is expected
that the Strehl ratio increases when the NA is decreased.
However, in general this is not true. In the special case
shown in Fig. 2, the Strehl ratio decreases when the NA is
decreased from its maximum value. This result can be seen
as follows: as in our example �n�n

m=0 for each m value,
the phase aberration ��1,�� at the rim of the pupil equals
0. From Eq. �9� it then follows that the slope at �=1 is
positive.

Appendix A: Proof of the Main Result, Eq. „4…
By decoupling per azimuthal order m=0,1 , . . ., and normal-
ization and orthogonality4 of Rn

m��� ,n=m ,m+2, . . ., the
Zernike coefficients �n

m��� of ���� ,�� and the Zernike co-
efficients �n

m of ��� ,�� are related by

�n
m��� = 2�n + 1��

n�

�n�
m Mnn�

m ���, n = m,m + 2, . . . . �10�

Fig. 1 Scaling low-order coma �3
1��� when �3

1=2��0.016� and �5
1

=2��0.016�. The solid line represents Eq. �4�, the dashed line is the
tangent line given by Eq. �7�, and Eq. �18� is represented by circles.
The summation in Eq. �10� is over n�=m ,m+2, . . ., and
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Mnn�
m ��� = �

0

1

Rn
m���Rn�

m ����� d�, n,n� = m,m + 2, . . . .

�11�

We shall show that

Mnn�
m ��� =

1

2�n + 1�
�Rn�

n ��� − Rn�
n+2����; �12�

in particular, it follows that Mnn�
m ���=0 when n�
n and

that Mnn�
m ��� does not depend on m, except that in Eq. �10�

we only use n ,n�=m ,m+2, . . .. For this we use6

Rl
k��� = �− 1��l−k�/2�

0

�

Jl+1�r�Jk��r� dr, 0 � � 
 1, �13�

when k , l are integers �0 with same parity; in the case of
k− l�0, the right-hand side of Eq. �13� vanishes, which is
consistent with the convention that then Rl

k�0. We use Eq.
�13� in Eq. �11� to rewrite Rn�

m ���� and interchange integrals
to get

Mnn�
m ��� = �− 1��n�−m�/2�

0

�

Jn�+1�r�


��
0

1

Rn
m���Jm���r�� d�� dr . �14�

To the inner integral we apply the result

�
0

1

Rn
m���Jm��v�� d� = �− 1��n−m�/2� Jn+1�v�

v
� �15�

4

Fig. 2 Scaling the Strehl ratio when �4
0=−�6

0=2��0.02�. The solid
line represents the combination of Eqs. �8� and �4�, the circles rep-
resent SOLID-C numerical calculation, and the dashed line repre-
sents the tangent line given by Eq. �9�.
from the Nijboer-Zernike theory, and we get
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Mnn�
m ��� = �− 1��n�+n−2m�/2�

0

� Jn�+1�r�Jn+1��r�

�r
dr . �16�

Next we use the identity7

Jn+1��r�
�r

=
Jn��r� + Jn+2��r�

2�n + 1�
, �17�

and use Eq. �13� to rewrite the resulting two integrals in
terms of Zernike polynomials. This gives Eq. �12�.

Appendix B: Dai’s Formula

We reproduce Dai’s formula3 for the scaling of Zernike

coefficients:
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�n
m��� = �n��n

m + �n + 1�


 �
i=1

�N−n�/2

�n+2i
m �

j=0

i
�− 1�i+j�n + i + j�!

�n + j + 1�!�i − j�!j!
�2j� �18�

with N being the maximum n value.
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