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Abstract. As one of the critical stages of a very large scale integration fabrication process, postexposure bake
(PEB) plays a crucial role in determining the final three-dimensional (3-D) profiles and lessening the standing
wave effects. However, the full 3-D chemically amplified resist simulation is not widely adopted during the post-
layout optimization due to the long run-time and huge memory usage. An efficient simulation method is proposed
to simulate the PEB while considering standing wave effects and resolution enhancement techniques, such as
source mask optimization and subresolution assist features based on the Sylvester equation and Abbe-principal
component analysis method. Simulation results show that our algorithm is 20× faster than the conventional
Gaussian convolution method. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction
Photolithography is a critical process in modern integrated
circuit manufacturing. As the technology advances, the fea-
ture size of the design pattern shrinks. Although the feature
size of the design pattern is much smaller than the wave-
length of the exposure light source, the optical diffraction
effects and the acid diffusion effects of the chemically ampli-
fied resist become key factors in the printing fidelity.

Acid diffusion and the standing wave effect occur during
the exposure which degrades the edge of the patterned image.
The standing wave effect is shown in Fig. 1, which is gener-
ally solved by the postexposure bake (PEB) process.
However, most of the simulations with resolution enhance-
ment techniques (RETs) did not consider acid diffusion.
Although some simulations include RETs, only a Gaussian
function is applied to simulate acid diffusion. Although the
influence of the acid diffusion during the PEB process
increases with the scaling down of the line-width, we need
to look into this issue more seriously.

In this paper, we consider the effect of the PEB process
into the RETs. Unlike the traditional methods, the Sylvester
equation is applied to simulate the PEB with an acid diffu-
sion effect in a 20× faster runtime than the convolution with
a negligible accuracy loss (10−16). In addition, our simula-
tion flow uses Abbe-principal component analysis (Abbe-
PCA) to get the aerial image through the optical lens
system,1 which can execute source mask optimization
(SMO) with a better performance of time efficiency than
the Hopkins’ method. We also propose an efficient method
called image intensity error with an error penalty coefficient
(EPC-IIE) to calculate the edge intensity error to get a fast
judgment for every candidate image.

The rest of this paper is organized as follows. In Sec. 2, a
new method for PEB acid diffusion based on the Sylvester
equation will be proposed. Moreover, taking the proposed
PEB acid diffusion solution into consideration, the RETs
will be described in Sec. 3. The results are shown in Sec. 4.

2 PEB Acid Diffusion Simulation
PEB process, which is a chemical reaction, is an effective
method of reducing standing waves. After the photoacid
from the photoresist is generated, a chemical latent image
will be formed through the photoacid diffusion. For faster
and more accurate PEB process simulation, the Sylvester
equation is applied to model the photoacid diffusion
function.

2.1 Postexposure Bake Diffusion

In the exposure process, some portions of light are not
absorbed by the photoresist and reach the substrate surface
which reflects light. This produces constructive and destruc-
tive interference formed by the standing wave effect. To
reduce the standing wave effect, the most useful method
is the PEB2 which is proposed by Walker.3

We use Fick’s second law of diffusion to describe molecu-
lar diffusion. CA is the concentration of species A, DA is the
diffusion coefficient of A at some PEB temperature T, t is the
PEB time, and r represents different directions in different
order.

∂CA

∂t
¼ DA

∂2CA

∂r2
: (1)

In general cases, it is accurate to assume that the diffusiv-
ity is independent of concentration. We can solve the*Address all correspondence to: Pei-Chun Lin, E-mail: pejailu@gmail.com
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diffusion equation of species A under general conditions and
the initial distribution.

Now consider one possible initial condition known as the
impulse source, which is also known as a delta function of
concentration. For the boundary conditions, we assume zero
concentration as r approaches �∞; in Eq. (1). The solution
of Eq. (1) is the Gaussian distribution, where σ is the diffu-
sion length and r denotes the distance from the reference
point to original point. In a general case, we can simulate
the diffusion function by using a convolution method.

CAðrÞ ¼
Nffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−r
2∕2σ2 ; (2)

σ ¼
ffiffiffiffiffiffiffiffi
2Dt

p
: (3)

2.2 Efficient Diffusion Equation Simulation Methods

Now we consider the solution of the diffusion equation
in one dimension, write the equation as ½∂Tðx; tÞ∕∂t� ¼
D½∂2Tðx; tÞ∕∂x2�, and define its boundary condition as
xl ≤ x ≤ xh. In the time domain, we discredited it into an
equally spaced grid tn ¼ tn þ nδt, and let Tn

i ¼ Tðxi; tnÞ.
We calculate the answer as in Eqs. (4) or (5) for each
time step.

Tnþ1
i − Tn

i

∂t
¼ D

Tn
i−1 − 2Tn

i þ Tn
iþ1

∂x2
; (4)

Tnþ1
i ¼ Tn

i − CðTn
i−1 − 2Tn

i þ Tn
iþ1Þ; C ¼ D

∂t
∂x2

: (5)

Stability is the most important issue for numerical meth-
ods. If we set the wrong constraints the number will spread to
infinity or be other under control states. Von Neumann sta-
bility analysis,4 also known as Fourier stability analysis, is a
procedure used to check the stability of finite difference
schemes applied to linear partial differential equations.
Consider the time evolution of a single-Fourier mode with
wave number k:

T ̑ nþ1eikxn ¼ T̑ neikxn ½1þ Cðe−ikδx − 2þ eikδxÞ�; (6)

T ̑ nþ1 ¼ AT̑ n; A ¼ 1 − 4C sin2
�
kδx
2

�
: (7)

Factor A is the amplitude of the Fourier mode at each time
step. From Eq. (7), we can clearly see that the Fourier mode
is stable when C < ð1∕2Þ.

2.3 Crank–Nicolson Method

The Crank–Nicolson method5 is a finite difference method
used for numerically solving the heat equation and similar
partial differential equations. Equation (8) is the scheme
that we use to revisit the original diffusion equation.

Tðx; tnþ1Þ − Tðx; tnÞ
∂t

¼ D∂2Tðx; tnÞ
2∂x2

þ D∂2Tðx; tnþ1Þ
2∂x2

: (8)

We performed the von Neumann stability analysis for
Eq. (8), with the amplified factor A ¼ ½1 − 2C sin2ðkδx∕2Þ�∕

½1þ 2C sin2ðkδx∕2Þ�. jAj < 1 for all values of k. It follows
that the Crank–Nicolson scheme is unconditionally stable.
The advantage of the Crank–Nicolson scheme is that not
only is it unconditionally stable, but it can also be speeded
up using matrix algebra.

Now, we consider the solution in two dimensions. By
adopting the Crank–Nicolson scheme, we can get the itera-
tion form as in Eq. (9):

Tnþ1
i;j −

Dδt
2ðδxÞ2 ðT

nþ1
i−1;j − 2Tnþ1

i;j þ Tnþ1
iþ1;jÞ

−
Dδt

2ðδyÞ2 ðT
nþ1
i;j−1 − 2Tnþ1

i;j þ Tnþ1
i;jþ1Þ

¼ Tn
i;j þ

Dδt
2ðδxÞ2 ðT

n
i−1;j − 2Tn

i;j þ Tn
iþ1;jÞ

þ Dδt
2ðδyÞ2 ðT

n
i;j−1 − 2Tn

i;j þ Tn
i;jþ1Þ: (9)

We set the number of grid points in the x and y directions
as n and m, respectively. However, this is not the same as the
number of time steps. We write it in matrix form then use
matrix algebra to speed it up. We rewrite the equation in
matrix form to calculate the solution for every grid point,
where Ix ¼ fð1∕2Þ þ ½Dδt∕ðδxÞ2�gI and Ix ¼ fð1∕2Þþ
½Dδt∕ðδyÞ2�gI are the identity matrix with the coefficient.

ðM þ IyÞTnþ1 þ Tnþ1ðN þ IxÞ ¼ C; (10)

M ¼ −Dδt
2ðδyÞ2

2
66666666666664

0 1 0 0 · · · 0 0 0

1 0 1 0 · · · 0 0 0

0 1 0 1 · · · 0 0 0

..

.

0 0 0 0 · · · 0 1 0

0 0 0 0 · · · 1 0 1

0 0 0 0 · · · 0 1 0

3
77777777777775

;

N ¼ −Dδt
2ðδxÞ2

2
66666666666664

0 1 0 0 · · · 0 0 0

1 0 1 0 · · · 0 0 0

0 1 0 1 · · · 0 0 0

..

.

0 0 0 0 · · · 0 1 0

0 0 0 0 · · · 1 0 1

0 0 0 0 · · · 0 1 0

3
77777777777775

:

2.4 Sylvester Equation

Recalling Eq. (10), we rewrite our function to AXþXB¼C,
where A ∈ Rm×m, B ∈ Rn×n, and X, C ∈ Rm×n, and we need
to solve X. This equation is known as the Sylvester equation.

We have m × n equations to solve these m × n unknown
numbers and no promise for yielding a unique solution.
A proven fact is that matrix X has a unique solution
if and only if the eigenvalues α1; α2; · · · αm of A and
β1; β2; · · · βn of B satisfy αi þ βj ≠ 0.
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A faster method6 to solve this equation is rewritten in the
form ðIm ⊗ Aþ BT ⊗ InÞvexX ¼ vexC, where I is the
identity matrix and ⊗ is the Kronecker product notation
and the vectorization operator vec. The Sylvester equation
can be seen as a linear system of dimensions mn ×mn.

Recalling Eq. (10), matrices A and B are diagonally dom-
inant, so the eigenvalues of matrices A and B are always
larger than zero. Both of the matrices are positive definite
and tridiagonal matrices. Therefore, our diffusion equation
satisfies the definition of the Sylvester equation, and we
can also use sparse matrix algorithms to speed up the perfor-
mance or reduce the memory usage.

2.5 3-D Formulation with Sylvester Equation

During the PEB process, the correlation between different
layers needs to be considered. There are tiny variations
between the layers caused by not only the exposure process
but also the PEB process. First, we cut the photoresist to k
layers. The size of each is n bym. Equation (9) can be written
as Eq. (11) in three-dimensions (3-D).

Tnþ1
i;j;l −

Dδt
2ðδxÞ2 ðT

nþ1
i−1;j;l − 2Tnþ1

i;j;l þ Tnþ1
iþ1;j;lÞ −

Dδt
2ðδyÞ2

ðTnþ1
i;j−1;l − 2Tnþ1

i;j;l þ Tnþ1
i;jþ1;lÞ −

Dδt
2ðδzÞ2

ðTnþ1
i;j;l−1 − 2Tnþ1

i;j;l þ Tnþ1
i;j;lþ1Þ ¼

Tn
i;j;l þ

Dδt
2ðδxÞ2 ðT

n
i−1;j;l − 2Tn

i;j;l þ Tn
iþ1;j;lÞ þ

Dδt
2ðδyÞ2

ðTn
i;j−1;l − 2Tn

i;j;l þ Tn
i;jþ1;lÞ

þ Dδt
2ðδzÞ2 ðT

n
i;j;l−1 − 2Tn

i;j;l þ Tn
i;j;lþ1Þ: (11)

We combine the computation of the z direction into the
smaller size of A and B matrices. For example, according to
the Sylvester equation AX þ XB ¼ C as shown in Fig. 2, the
dimensions of A, B, X, and C are now A ∈ Rm×m,
B ∈ Rðn×kÞ×ðn×kÞ, and X, C ∈ Rm×ðn×kÞ. The size of B matrix
changes from n × n to ðn × kÞ × ðn × kÞ. Each layer of the
main diagonal fLayer1;Layer2; : : : ;Layerkg in Fig. 3 is
a ðN þ IxÞ þ ½Dδt∕ðδzÞ2�I matrix as in Eq. (10). The
upper block fU12; U23; : : : ; Uðk−1Þkg and lower block

fL12; L23; : : : ; Lðk−1Þkg are the same size as the Layer.
Every block Uðl−1Þl and Lðl−1Þl is a diagonal matrix with
the value −½Dδt∕2ðδzÞ2�. As a definition, the new matrix
is still a diagonally dominant matrix, so the matrix is still
positive definite. We can use the Sylvester equation to
solve it. The matrix is symmetric and sparse, so the space
complexity is Oðn × kÞ. If we are in a uniform system, it
means that the diffusion coefficient D is consistent in differ-
ent places of the photoresist and we can save the memory
usage as a constant.

3 Resolution Enhancement Techniques
With the feature size of devices shrinking and the number of
transistors on the chip increasing, image simulation on the
photoresist is facing the challenge to be both fast and accu-
rate. Therefore, many resolution enhancement techniques
have recently been proposed to improve the image resolution
quality and make it easy for manufacture. In this work, we
use the SMO and subresolution assist features (SRAFs)
based on the Abbe-PCA to fast and accurately enhance
the latent image quality.

3.1 Source and Mask Optimization

Many of the RETs mentioned above are in favor of improv-
ing the printing quality individually. There are two solutions
for RETs; one is to optimize the light source, another one is
to optimize the mask. SMO is the RETs that take not only the
mask but also the source into consideration for an overall
optimization. Therefore, SMO provides a larger solution
space and leads to a better result than other simple RETs.
In this work, we decide the source points in the first quarter,
and then map them into the remaining three quarters.
Therefore, we will generate four lookup tables every time
when increasing or deleting a source point in the first quarter.

Initially, the image system is illuminated by the existing
Abbe point sources of a given illuminator. As shown in
Fig. 4, during source optimization, we first consider the can-
didate Abbe point sources outside the initial illuminator.

Fig. 1 The standing wave effect.

Fig. 2 The diagram of the Sylvester equation in matrix form.

Fig. 3 The three-dimensional (3-D) formulation matrix.
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Every candidate Abbe point source is considered to be added
if the resultant cost function value is getting better.
According to the properties of Abbe-PCA mentioned previ-
ously, Abbe-PCA kernel compaction can be performed
repetitively after we add or delete any Abbe sources during
the source optimization.

The mask optimization we use in this work is a combi-
nation of pixel-based optical proximity correction (OPC)
methods. For our pixel-model-based OPC process, we
denote the mask patterns during iterative mask optimization
as O ¼ Oo þOp −On. As shown in Fig. 5, the notation that
Oo is the initial mask pattern, which is also the target design
pattern we expect, Op is the candidate external pixels to be
added, and On is the existing internal pixels to be deleted.

In our pixel-model-based OPC, the order of the searching
sequence would significantly affect the final result and
should be carefully decided. In the essence of optical and
process proximity, nonideal effects are usually dominated
by neighboring features. Therefore, we propose a breadth
first search starting from the edges of the original mask pat-
tern. The pixel-based OPC is performed gradually from the
initial edges toward the insides and outsides. Moreover, the
optimization masks are mostly chosen near the original mask

pattern. As a result, we use conventional model-based OPC
first for the rough optimization with the large pixels. In addi-
tion, we perform pixel-based OPC for detailed optimization
with the small-pixels on the previous model-based results
hierarchically as shown in Fig. 6.

3.2 Subresolution Assist Features

SRAFs are another solution for RETs. Due to the interfer-
ence effect, SRAFs is highly relative to λ0∕NA, where
NA is the numerical aperture and λ0 is the wavelength of
the light source. The essence of the optical system, image
resolution, is determined by the smallest lens which is
also called the exit pupil with its diameter of numerical aper-
ture. SRAFs with scattering bars have been proven effective
in adjusting the critical dimension of isolated lines to match
that of densely packed lines, and simultaneously improving
the depth of focus of isolated lines to match the dense case. In
this work, we place the assist features following the rule
based on Eqs. (12)–(14), where theMaxSrafNum is the num-
ber of assist features we can add to every edge, the SrafThick
is the width of the assist features in our work,7 and the
SrafDistance is the distance from one assist feature to
another assist feature or the main feature. Under our calcu-
lation and experiment, we set SrafThick and SrafDistance as
0.19ðλ0∕NAÞ and 0.75ðλ0∕NAÞ.
HitYLow¼YLow−2�MaxSrafNum�SrafThick

−ð2�MaxSrafNumþ1Þ�SrafDistance; (12)

HitXHi ¼ XHiþMaxSrafNum � SrafThick
þ ðMaxSrafNumþ 1Þ � SrafDistance; (13)

HitXLow¼XLow−2�MaxSrafNum�SrafThick
−ðMaxSrafNumþ1Þ�SrafDistance: (14)

We generate the assist feature hit lists before we add the
assist feature. The hit lists record the other rectangles that
may overlap with the assist features of the tested rectangle.
Taking the top edge of a tested rectangle as an example, we
will inspect three blocks which will overlap with the assist
features of the testing rectangle. First, we inspect the left
block whose y coordinate is from HitYLow to YLow, and
the x coordinate is from HitXLow to XLow. Second, we
inspect the right block whose y coordinate is from
HitYLow to YLow, and the x coordinate is from XHi to
HitXHi. In the end, we inspect the central block whose y

Fig. 4 Source optimization using Abbe-PCA.

Fig. 5 Candidate internal and external pixels.

Fig. 6 Hierarchical pixel-model-based OPC.
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coordinate is from HitYLow to YLow, and the x coordinate is
from XLow to XHi. Notations that the XLow, XHi, YLow are
the boundaries of the tested rectangle, and HitYLow, HitXHi,
HitXLow are indicated in Eqs. (12)–(14).

3.3 Partial Coherent Illumination

Describing the partial coherent illumination, the mutual
intensity Jðx; yÞ is applied to the image formulation.
Jðx; yÞ can be derived from Fourier transformation to the
physical shape of illumination J̃ðx; yÞ. The symbol σ in
Eq. (15) is defined as the diameter ratio between the illumi-
nator and the exit pupil, which is equivalent to the essence of
the optical lens system of the lithography.

J̃ðf; gÞ ¼
�
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ g2

p
< σ

0; otherwise
: (15)

3.4 Abbe’s Image Formulation

For the partial coherent system, there are two approaches for
imaging, one is Hopkins’ theory8 and another is Abbe’s
method. Hopkins’ imaging requires the transmission
cross-correlation (TCC) matrix of the illuminating pattern
with the pupil and its complex conjugate. To generate the
TCC matrix, a space complexity of Oðn4Þ is needed.
Therefore, we choose Abbe’s method to formulate the
image system.

Iðx; y∶zÞ ¼ I−1max

ZZZ ZZZ
J̃ðf; gÞH̃0ðf þ f 0; gþ g 0∶zÞ

Õðf 0; g 0Þ · H̃�
0ðf þ f 0 0; gþ g 0 0∶zÞ

Õ�ðf 0 0; g 0 0Þe−i2π½ðf 0−f 0 0Þxþðg 0−g 0 0yÞ�df dg df 0 dg 0 df 0 0 dg 0 0;

(16)

Iðx; y∶zÞ ¼ I−1max

ZZ
J̃ðf; gÞ

����
ZZ

H̃0ðf þ f 0;

gþ g 0∶zÞÕðf 0; g 0Þe−i2πðf 0xþg 0yÞdf 0 dg 0
����
2

df dg;

(17)

Iðx; y∶zÞ ¼ I−1max

Z þ∞

−∞

Z þ∞

−∞
J̃ðf; gÞ

jH0ðx; y∶zÞe−i2πðfxþgyÞ �Oðx; yÞj2df dg:
(18)

Abbe’s image formulation is based on approximating
the illuminator into a sum of discrete point sources

J̃ðf; gÞ ≅ P
source
s asδðf − fs; g − gsÞ. We rewrite the

Hopkins’ formulation as shown in Eq. (16) into a squared
integration of convolution results with respect to the physical
shape of the illuminator. Equation (18) shows that the image
intensity can be calculated by summing the square of the
light field caused by each Abbe source.

3.5 Abbe-Principal Component Analysis Method

PCA is mathematically defined as an orthonormal linear
transformation. PCA transforms the data to a coordinate
spanned by its eigenvectors such as the greatest eigenvalue.
In addition, PCA can be used for dimensionality reduction in
a data set by retaining the principal components which con-
tain the greater eigenvalue and neglecting the nonprincipal
components. However, most of its characteristics still
remain.

We modify Eq. (18) to Eq. (19), where as is the relative
intensity of each Abbe point source. Our goal is to rebuild
the coherent systems by using principal eigenvectors of the
image kernel space to approximate the behavior of the sum
of the coherent system built by Abbe’s method.1

Iðx; y∶zÞ ¼ I−1max

Xsource
s

asjHsðx; y∶zÞ �Oðx; yÞj2

¼ I−1max

Xkernel
c

λcjφcðx; y∶zÞ �Oðx; yÞj2; (19)

HH� ¼ ðUSV�ÞðUSV�Þ� ¼ USV�VS�U� ¼ US2U�: (20)

We describe the image system as Eq. (19). We suppose
there are kAbbe point sources, and we can generate k kernels
with size n by n. We can set the kernel into a matrix H with
dimension n2 by k. We use the singular value decomposition
method, and derive it as H ¼ USV�, where U is the
eigenvectors of the image kernel space, V is the coefficients
of the point spread function linear combination, and S is the
singular values. We can rewrite the image system as
Iðx; y∶zÞ ¼ I−1max

P jOðx; yÞ � USj2 by Eq. (20). Thus, the
PCA transformation can be written as K ¼ HV ¼ US,
which means the PCA space K can be spanned by a linear
combination of PCA kernels ϕc in U with the weights of sin-
gular values in S. As shown in Fig. 7, using Abbe-PCA
reduces the kernel size from n2 × k to n2 × k 0.

Fig. 7 Abbe-PCA compaction.
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3.6 Error Penalty Coefficient

Traditionally, the cost function used in RETs is measured
by the edge placement error (EPE),9 which calculates the
difference between the image contour and the excepted
design pattern. However, EPE is time-consuming since it
involves the full image simulation demanded and is hard
to handle with a mathematical expression. In this work,
we propose another cost function called EPC-IIE. The
EPC-IIE is described in Eq. (21). Notation Oe;ctrðx; yÞ
means the sampling function at the edges of the whole
design pattern, and Ictr means the contour threshold for a
constant image model. EPC-IIE is defined as generalized
edge intensity error with extra two contours and image
thresholds, which does not only optimize the edge inten-
sities but also their adjacent two contours with different
thresholds. The definition of the error penalty coefficient
is like a piecewise linear step function, which has a different
constant coefficient in every image intensity error range as
illustrated in Fig. 8.

Fig. 8 Error penalty coefficient.

Fig. 9 Our flowchart of resist image simulation.

Table 1 Optical parameters of lithography system for 45-nm
immersion.

Description of parameter Notation Value

Image space refractive index nimg 1.45

Maximum incident angle θmax 1.25 rad

Numerical aperture NA 1.35

Exposure wavelength λ0 193 nm

Defocus ddefocus 0.0

Diffusion coefficient D 3.44 × 10−20 m2 s−1 K−1

Postexposure bake (PEB) time t 50 s

PEB temperature T 150°C
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Fig. 10 (a) The existing Abbe sources, (b) the candidate Abbe sources, and (c) Abbe sources after
optimization.

Fig. 11 (a) The original mask, (b) the original aerial image, (c) the image after postexposure bake (PEB),
(d) difference between (b) and (c), (e) the image contour of (b), (f) the image contour of (d), (g) the
mask after source mask optimization and subresolution assist features, and (h) the final effective latent
image.
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EPC − IIE ¼
Xcontour
ctr

Xedge
e

PðIIEÞjIðx; yÞ − IctrjOe;ctrðx; yÞ:

(21)

4 Simulation Result
We contruct our system in MATLAB 2010, following the
simulation flowchart shown in Fig. 9. As for our hardware
environment, the CPU is Intel Core i7-2600 3.1 GHz with
16-GB RAM. Windows 7 is also applied as our operating
system.

We use the typical 45-nm immersion lithography10 in our
work. We also use a mesh point up to 20 for the accuracy of
kernels, namely the exit pupil in the spectrum domain is a
circ function with a radius up to 10. In addition, we
downscale the mask and kernels with a scaling factor 0.6,
so that the simulation resolution is under 1.7 nm
which saves runtime, and the diffusion coefficient is
3.44 × 10−20 m2 s−1 K−1.11 The detailed parameters are
listed in Table 1, and the thickness of the photoresist
is 100 nm.

Moreover, in the PEB process, our method demonstrates a
speed up around 20× over the convolution method for a sin-
gle time step (2 s) as illustrated in Fig. 11(b). To simulate a
50-s flexible PEB diffusion process, our method only takes
250 s with a convolution set up for a 1860 × 1860 working
area. To complete the resist image from the exposure proc-
ess, it takes less than 120 s for each iteration, with a specified
iteration cycle.

Figure 10 shows the original existing Abbe sources, the
candidate Abbe sources and the final sources after optimized
the design pattern as shown in Fig. 11(a).

Figure 11(a) shows the original mask and Fig. 11(g)
shows the optimized mask after our flowchart. As shown
in Figs. 11(d)–11(f), there are significant differences
between the aerial image and the image after PEB because
both the image intensity and the contour shape of them are
different. Figure 12 shows the acid concentration before and
after PEB along the z direction, which represents the acid
concentration at the short edge of the polygon X in
Fig. 11(b). The scaling factor of the z direction is 0.4 for
the photoresist thickness, so the thickness of the photoresist
is 100 nm. As shown in Fig. 12(a), we can clearly see the
standing wave. The variation of the acid concentration
after the PEB is shown in Fig. 12(c). We can see the acid
diffuse from higher concentration (z ¼ 0) to lower concen-
tration (z ¼ 40). We set a value 0.3 for the image threshold to
calculate the EPC-IIE with the acid diffusion effect. In
Eq. (21), we realize the latent image is more similar to
the original mask if the EPC-IIE is small. The average
EPC-IIE for all edge points is shown in Table 2, which
shows the RETs we implemented.

5 Conclusions
In this paper, we consider the acid diffusion effect in our in-
house simulator. In addition, the Sylvester equation is applied
to simulate the PEB acid diffusion. Therefore, when simulat-
ing the PEB acid diffusion with a 3-D Sylvester equation, the
simulation time is 20× faster than convolution method with a
negligible accuracy loss (10−16). Moreover, our result will be
closer to the real shape after the processes.
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