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ABSTRACT 

Based on the traditional drug-target interactions, a drug-target hypernetwork evolution model was constructed using 

hypergraph theory. The evolutionary law of the growth of drug-target interactions was analyzed by mean-field theory, 

and it was found that the distribution of drug-target hypernetwork conformed to a power-law distribution, and further 

theoretical analysis obtained that the power exponent of the distribution was correlated with the growth rate of the target 

species corresponding to drug development. A larger exponent tends to explore new targets. By analyzing the drug target 

data collected from the drugbank in 2021, it was confirmed that the empirical results are consistent with the theoretical 

analysis and simulation results. 
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1. INTRODUCTION 

With the progress of the times and the rapid development of society, there have been a large number of complex 

networks in the real world. The emergence of these networks has aroused great enthusiasm among scholars, and the 

study of complex networks was initiated by the famous mathematicians Erdös and Rényi who proposed the ER random 

graph1 model in the 1960s, and the small-world model2 and scale-free model3 proposed by Watts and Albert at the end of 

the 20th century, which started the research of complex networks. Nowadays, the research field of complex networks has 

been extended to all aspects of social life, such as protein networks, metabolic networks, gene co-expression networks in 

life sciences, subway networks, airline networks, trade networks in transportation networks4-7. 

The empirical analysis of the evolution patterns of complex network structures and the corresponding modeling studies 

are the basis for a comprehensive understanding of complex network functions and their applications. For example, the 

new weighted directed network evolution model proposed by Gao8 portrays the generation process of new directed edges 

based on the strength of incoming and outgoing nodes caused by the addition of new nodes, as well as the dynamic 
changes of the local directed edge weights of the network; You9 established a technology evolution network model based 

on patent citation network and used the method of complex networks to reveal the topology, evolutionary rules and 

dynamics of technology evolution network; Li10 proposed an evolutionary analysis model of power user groups based on 

complex networks; Lv11 proposed a new parallel evolutionary model for complex networks, which allows different 

localities in the same network to follow different evolutionary models, thus comparing the advantages and disadvantages 

of different evolutionary models in terms of search efficiency on a unified basis; Cui12 defined the attractiveness of 

national LNG trade based on the core drivers (international community’s emission reduction policies, supply and 

demand) in the current international LNG trade, and further constructed a weighted BBV network evolution model based 

on the attractiveness and distance of national LNG trade through a complex network approach to analyze the evolution of 

the international LNG trade network from 2016 to 2018, The validity of this evolutionary model is verified. 

In the current study of complex networks, the structure of ordinary graphs is commonly used; however, complex 
networks based on ordinary graphs have certain limitations and duality in describing more complex relationships, while 

hypergraphs differ from traditional network connections in this mode of connection that conveys higher-order 

information, and their superiority lies in the fact that the description of hypergraphs is more liberal, because it is not 
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specified that a hyperedge must contain several vertices, so it is relatively ideal for semantic delineation or partitioning of 

graph data are relatively ideal. For example, in a research collaboration network, assuming that edges are articles and 

points are article authors, multiple authors of the same article are easily lost in a simple graph. Because a simple graph 

can only be two points and one article can only connect two authors; however, for hypergraphs, using their properties can 

better describe the cooperation relationship between authors, so scholars try to extend the traditional complex network 
theory to the field of hypernetworks. There are two kinds of hypernetworks, network-based supernetwork and 

hypergraph-based hypernetwork. 

As a complex network with multi-level, multi-dimensional and multi-association relationships, hypernetworks have been 

widely used in research directions such as social network analysis, supply chain, knowledge management and public 

opinion analysis. Based on the perspective of dependency-based multilayer network, Wang13 used the patent application 

data of the Yangtze River Delta (YRD) city cluster for collaborative innovation between industries, universities and 

research institutes from 2009 to 2018 to construct a multilayer network including cooperation network, knowledge 

network and city-knowledge element affiliation network, explore the structural characteristics evolution of the 

collaborative innovation network of the YRD city cluster, and construct an ERGM model to study the formation 

mechanism of the YRD city cluster collaborative innovation network; Shen14 considers enterprises as nodes and inter-

enterprise relationships as connected edges, and establishes a supply chain financial network evolution model based on 

the real transaction context of supply chain finance. The cumulative steady-state average degree distribution of the 
supply chain financial network is obtained through mathematical analysis, and the results are analyzed by computer 

simulation; Tang15 constructed a hyper-network dynamic evolution model for the growth and fading mechanism of 

knowledge in mass collaborative innovation communities; Suo16 used a hyper-network approach to construct a model 

based on users’ rating data on social networks in order to analyze the characteristics of resource reviews on online social 

networks and their evolution laws; Liu17 proposed and established four kinds of small-world model and scale-free model 

based on a mixture of three-layer hypernetwork evolution model; Hu18 constructed a research collaboration 

hypernetwork evolution model based on the collaboration of scientific paper authors using hypergraph theory; Chen19 

constructed a public transportation hypernetwork evolution model based on the evolution characteristics of realistic 

public transportation system and analyzed the distribution of hyperedges in the evolution and the influence of evolution 

model parameters on the distribution of hyperedges; Hu20 constructed a protein complex hypernetwork model and 

identified key proteins of the network based on the relevant topological indicators of the hypernetwork; Wei21 introduced 
the interaction of geographic proximity and technological proximity to form a multidimensional proximity and super-

degree combination merit connection mechanism, and constructed a super-network evolution model of emerging 

technology innovation. The evolution law is revealed through numerical simulation, and the empirical analysis is carried 

out in the context of China’s new energy vehicle technology innovation network. 

2. DEFINITION OF HYPERGRAPH 

Let 
1 2{ , , , }nV v v v= be a finite set, and if ( 1,2, , )iE i e =  and 

1

e

i

i

E V
=

= , then the binary relation ( , )H V E=  is said 

to be a hypergraph. The elements 
1 2, , , nv v v  of V are called the nodes or vertices of the hypergraph and the elements 

1 2
{ , , , }(1 )

ji i i iE v v v j n=   in E  are called the hyperedges of the hypergraph. The number of hyperedges containing 

vertex iv  is called the hypergraph degree of vertex 
iv  and is denoted as ( )H id v . The hypergraph H  is represented by a 

graph. In the hypergraph H  shown in Figure 1, the vertex set 
1 2 3 4 5 6 7{ , , , , , , }V v v v v v v v= , the hyperedge set 

1 2 3 4{ , , , }E e e e e= , where 
1 1 2 3{ , , }e v v v= , 

2 2 3{ , }e v v= , 
3 3 5 6{ , , }e v v v= , 

4 4{ }e v= , and 
7v  are isolated vertices, where the 

supremum of vertices 
1 2 3 4 5 6, , , , ,v v v v v v are 1, 2, 3, 1, 1, 1 respectively. 
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Figure 1. General representation of the hypergraph H. 

3. EVOLUTIONARY MODEL OF DRUG TARGET HYPERNETWORK 

With the gradual improvement of next-generation high-throughput proteome sequencing technology, the interactions 

between proteins are becoming more and more perfect, making the identification of drug targets more valuable. Using 

the interaction network between proteins, the similarity network of drugs, and the targeting network between drugs and 

proteins, new drug targets can be predicted more accurately; therefore, the construction of drug target hypernetwork can 

provide new research ideas for predicting drug target modules from a high-dimensional, multi-level, and multi-

correlation perspective. Here we give the hypernetwork representation of drug targets, where vertices denote targets and 

drugs denote hyperedges. For each additional class of drugs, there may be drugs in known hyperedges that act on it, or 

new target nodes may be added. Different hyperedges are adjacent to each other through common vertices, so a large 

number of drug target interaction relationships will form a drug target hypernetwork based on drugs with similar 

potency. Based on this, the construction process of the hyper-network evolution model in this paper is as follows. 

(1) Initialization  

Assume that initially there are 
0n  targets in the network and one drug acting together forms a hyperedge. 

(2) Hyperedge growth 

A drug is added in each time step according to the variation of time ( 1,2, )t t =  with the following addition rules. 

(i) denote with probability 
iP  the probability that there are i  targets in the added drug, where 

1

1
m

i

i

P
=

= . 

(ii) with probability 
jq  that the target corresponding to the new drug is the same as the j  old targets in the original 

network, where ( 0,1,2, , )j m= , 
0

1
m

j

j

q
=

= . Then 0j =  means all the targets in the hyperedge are new targets and

j m= means all the targets in the hyperedge are old targets. 

(iii) Preferential linkage based on hyperdegree 

When we select a newly added drug hyperedge, we usually tend to select the target that already has many drugs acting 

together as the old target in the new hyperedge, so when a drug is added within each time step, the drug is selected to be 

connected to the old target i  in the original network using the hyperdegree priority connection, and the probability ( )i  

of each selected connected node i  is equal to the hyper-degree ( )Hd i  of node i  and the ratio of the sum of the 

hyperdegrees ( )Hd j  of the already existing nodes j , i.e., 

                                                                 ( )
( )

( )

H

H

j

d i
i

d j
 =


                                                                          (1) 

where the numerator ( )Hd i  denotes the hyperdegree of node i , i.e., the number of drugs acting on target i , and the 

denominator denotes the sum of the hyperdegrees of all nodes, i.e., the total number of drugs acting on all targets already 
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in the network. Figure 2 simulates the evolution of adding to species 5 drugs, the hollow dots indicate the newly added 

targets and the dotted curves indicate the newly added drugs. 

 

Figure 2. Schematic diagram of the evolution of the drug target hypernetwork. 

4. ANALYSIS OF DRUG TARGET INTERACTION DATA 

4.1. Data processing and analysis 

We constructed the hypernetwork model by processing and analyzing the drug target dataset in drugbank2021.3. The 

results are shown in Table 1. From Table 1, we know that the types and numbers of drugs acting on multiple targets are 

much less than those acting on single target, accounting for about 2% of the total, while the number of drugs acting on 

single target accounts for 76% of the total. The distribution of the number of drugs plotted according to the data in Table 

1 is shown in Figure 3, and the cumulative distribution exhibits a clear single-peaked exponential decay function. This is 
consistent with the analysis of Yildirim et al.22 in terms of drug targeting relationships, with higher local clustering 

coefficients indicating a tendency for drugs to connect to older targets. The reason for this trend is that drug studies focus 

on removing the cause of the disease, restoring the function of the organism, preventing complications, and relieving 

symptoms. Obviously, prior to clinical studies in humans, all drug effects were based on animal (e.g., rats, dogs, and 

monkeys) tests, and the effects of drugs on humans and the extent of those effects were speculations and assumptions 

based on those tests. Therefore, the true effect of a drug on humans must be confirmed by clinical studies. This process is 

time consuming and heavily regulated, so drugs tend to choose targets that have been experimentally validated. 

Table 1. Statistics of the number of targets contained in drugbank-2021.3 drugs. 

Number of drugs Drugbank Proportion (%) 

0 1873 25.02 

1 3875 51.77 

2 908 12.13 

3 291 3.89 

4 158 2.11 

5 93 1.24 

6 54 0.72 

7 39 0.52 

8 28 0.37 

9 26 0.35 

10  140 1.87 

Total drugs 7485  
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Figure 3. Distribution of the number of targets contained in the drug. 

4.2. Mean field theory analysis 

In a drug target hypernetwork, we usually focus on how many drugs a target acts with (i.e., the value of the node’s 

hyperdegree), based on which we can judge the drug’s the range of drug efficacy, the strength of drug efficacy, etc., and 

the range of hyperdegree may be related to the tissue-specific region of the disease action. The following is a theoretical 

analysis of the evolution law of drug target hypernetwork using mean field theory. 

The main idea of mean field theory embodied in this paper is: firstly, establish that the hyperdegree ( )Hd i  of node i  

satisfies the kinetic equation, secondly, make i  obey uniform distribution, reflecting the random selection of node i  , 

then to find out the probability distribution ( , )H HP d t , and finally to take the limit to get the final probability distribution 

( )H HP d . 

According to the above algorithm for the construction of the hypernetwork model, in each time step t , the addition of a 

drug (hyperedge) with ( 1,2, , )l l m=  targets in the drug (determined by the probability 
lp ) and ( 1,2, , )j j m=  old 

targets in the l  targets (determined by the probability 
jq ) causes a change in the hyperedge of node i . The hyperedge of 

node i , ( )Hd t  satisfies the kinetic equation. 

                            
1 0

( )
m l

H
l j

l j

d
p q j i

t = =

  
=       
                                                         (2) 

where 
( )

( )
( )

H

H

j

d i
i

d j
 =


, and the denominator is the sum of the hyperdegrees of all nodes at moment t , which is the sum 

of the drugs corresponding to all targets at moment t . 

0

1

( )
m

H l

j l

d j n t p l
=

 
= +  

 
                                                             (3) 

Then 

0 1 1

, ,
l m m

j l l

j l l

q j J p J M p l L
= = =

= = =                                                (4)    

Equation (2) can be reduced to 
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0

( )H Hd d
M i M

t n tL


=  =

 +
                                                          (5) 

When t  is sufficiently large, 

                                H Hd dM

t L t


 


                                                                        (6) 

Each node joins the hypernetwork is the initial value of the node’s hyperdegree ( ) 1H id t = , then solving the equation 

yields ( ) ( )M L

H

j

t
d t

t
= , and since the nodes joining the hyperedge in the hypernetwork are chosen randomly, the 

probability that the node has hyperdegree 
Hd  is: 

                        ( ) /
( )H H H H i L M

H

t
P d t d P t

d

 
 =  

 

                                                   (7) 

Assuming that at the same time interval, the newly added hyperedges obey a uniform distribution, i.e., the value of it  

has a constant probability density 
1

( )it
t

 = , thus substituting into the equation to obtain: 

                      
/ /

/

1

1

H i H iL M L M

H H

L M

H

t t
P t P t

d d

t

d t

   
 = −   

   

= −


                                                (8) 

Deriving the above equation, the instantaneous hyperdegree distribution ( , )H HP d t  of the network is: 

( )
( ) (1 / )

( )
,

H H L M

H H H

H

P d t d L
P d t d

d M

− +
 

= =


                                             (9) 

That is, the node hyperdegree distribution (1 )( ) L M

H H H

L
P d d

M

− += . 

This shows that the node hyperdegree distribution conforms to the power-law distribution with scale-free property as the 

degree distribution of many complex network models. The power exponent   is 1+
L

M
, and a larger   indicates a faster 

growth of the drug species acting with that target. 

4.3. Monte Carlo numerical simulation analysis 

Based on the previous model construction algorithm, a Monte Carlo numerical simulation method was used to generate 

the number of targets of drug action and the number of connected old targets, and time series were generated iteratively 

to gradually construct a drug target hypernetwork evolution model, and the distribution characteristics of drug targets 

over time were simulated by computer. 

We suppose there is only one drug at the beginning and the number of targets is 4. With the change of time t, one drug is 

added in each time step (assuming that the number of targets corresponding to the drug does not exceed 10), and 

according to the statistics of the number of targets of the drug in Table 1, the probabilities of targets in the drug are taken 

as 
1 0.25p = , 

2 0.52p = , 
3 0.12p = , 

4 0.04p = , 
5 0.02p = , 

6 0.01p = , 
7 0.01p = , 

8 0.01p = , 
9 0.01p = , 

10 0.01p = . The 

probabilities of the selected connected old targets were taken as a set of values 
0 0.01q = , 

1 0.02q = , 
2 0.03q = , 

3 0.04q = , 
4 0.05q = , 

5 0.85q = ; (we used a computer simulation of the total number of drugs N 7400 in a double 
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logarithmic coordinate system. The distribution of the number of drugs acting on the target follows a power-law 

distribution, showing the scale-free property with a power exponent of =2.05763  (Figure 4). 

 

Figure 4. Distribution of hyperdegree of model evolution results with theoretical analysis under specified parameters, 
simulation results are the average of 50 simulation results. 

4.4. Empirical data analysis 

To apply the empirical data to validate the evolutionary model in this paper, we collected the drug target dataset of 

drugbank 2021.3 and analyzed the number of drugs corresponding to the targets, as shown in Table 2. 

Based on the data in Table 2, the distribution of the number of target-acting drugs was plotted in a double logarithmic 

coordinate system as in Figure 5, and the power exponent was found to be consistent with the theoretical and simulated 

results of the simulation. 

Table 2. Statistics of the number of drugs corresponding to drugbank-2021.3 targets. 

Number of targets Drugbank Proportion (%) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10  

2018 

750 

362 

203 

139 

72 

54 

51 

42 

197 

51.90 

19.29 

9.31 

5.22 

3.58 

1.85 

1.39 

1.31 

1.08 

5.07 

Total targets 3888  
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Figure 5. Empirical map of target hyperdegree distribution. 

4.5. Comparative analysis of theoretical results 

The distribution index =1+
L

M
 of the number of drugs corresponding to the targets (node hyperdegree) is obtained 

from the theoretical analysis and defined in Section 4.2: 
1

m

l

l

L p l
=

=  indicates that there are L  targets in a drug added at 

time t , 
1 0

m l

l j

l j

M p q
= =

=  , M  indicates that there are L  targets in a drug added at time t  The number of targets in the 

existing network is the number of M  targets. Obviously, L M , the extreme case, when L M= , means that the 

number of target species contained in the added drug is similar compared with the existing ones in the original network, 
and the index of its target hyperdegree distribution reaches the minimum value =2 ; when L M , the larger the 

proportion occupied by L , the larger the value of  , i.e., the larger the proportion of old targets in the added drug; on 

the contrary, if the number of new targets connected in the added drug during the evolution On the contrary, if the more 

the number of new targets are connected in the new drugs during the evolution, i.e., each time a new super-edge is 

introduced, more and more new nodes are added, the larger   is. Because 
L

L m
M

   (m is the maximum number of 

targets contained in all drugs), then 2 1 m  + . 

To examine the correlation between drug target growth rate and hyperdegree, this paper compared the number of drug 

growth with the number of target growth, and the empirical data analysis is shown in Figure 6. Figure 6 shows that the 

drug target growth rate (i.e., L M ) is 1.05, which translates into a drug target hypernetwork distribution index 

1 2.05L M = + = , consistent with the actual drug target hyperdegree power law index. 

 

Figure 6. Empirical relationship between targets (M) and the total number of cumulative targets (L) in the original network. 
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5. CONCLUSION 

In this paper, we constructed a drug target hypernetwork evolution model based on drug target interactions according to 

hypergraph theory, and on this model. We analyzed the evolution law of target drug action by theory, and found that the 
distribution of target hypernormality follows a power law distribution, and this result is consistent with the results of 

Monte Carlo simulation experiments and empirical analysis. We also concluded that the value of   is related to the 

target growth rate, and the larger   is, the greater the rate of newly developed drugs corresponding to new targets, and 

this conclusion is also supported by the empirical data set from drugbank. 
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