

Research on Internet of Things (IoT) accessing platforms for multiple

applications and scenarios

Yongjie Leea, Shidong Liub, Yong Yanc,*, Li Ningd
aCollege of Electronic Engineering, Naval University of Engineering, Wuhan, China; bUnit 92228 of

Chinese People’s Liberation Army, Beijing, China; cBeijing Jinghang Computation and

Communication Institute, The Third Academy of China Aerospace Science and Industry Corporation,

Beijing, China; dBeijing Institute of Mechanical and Electrical Engineering, The Third Academy of

China Aerospace Science and Industry Corporation, Beijing, China

ABSTRACT

This paper proposes a set of IoT connection management and data service platform. The IoT platform can avoid the

disadvantages that hardware systems of multiple manufacturers and multiple systems need to be adapted separately. The

unified access method of IoT sensing devices is studied to enable the access work of devices to be carried out in a

configurable way and improve the efficiency of device access and management. The platform provides powerful data

channels for users and help the dual-direction communications of terminals like multi communication between sensors,
actuators, embedded devices and intelligent appliances. It also supports concurrent and massive access of devices,

million-level messages concurrent processing performance and provides multiple protections of devices and realizes data

extraction, storage, processing and integration from multiple IoT devices.

Keywords: Internet of Things (IoT), terminal device, device events

1. INTRODUCTION

Sensor, working as measurement and control terminal, is the bottom of IoT1. But currently there are no unified standards

and protocols between the terminals from each company. Terminals from different companies do have different

communication protocols and accessing methods2. This paper proposes a set of IoTs connection management and data

service platform (hereinafter referred to as IoT platform) which not only has the ability of unified access and
management on different measurement and control terminals3, but also can provide unified data service for application

systems.

2. CHARACTERISTICS OF THE PLATFORM

IoT platform is designed above perception layer and network transport layer, the bottom of the IoT technology system

and under the application layer. It works in the middle of the perception layer and the application layer4. The platform

can deploy independently and complete the access management of the perception layer devices according to specific

application requirements. Application data related to industry applications is handled by the application system in the

upper layer5. Due to the different industries and businesses, different application systems should be applied to realize

corresponding business logic analysis and processing; and these application systems belong to different measurement and
control terminals, which are all required to access IoTs for unified access and device management, so as data analysis

and data services6.

The main technical characteristics of the IoT platform are

(1) Multi-protocol access: it supports the access from protocols like MQTT, Socket, WebSocket, Coap, Stomp, Modbus

DTU, Modbus TCP, which can help and solve the access management of various heterogeneous devices.

(2) IoT security: it can provide safe protection for each link during the data processing from access to the upper layer

presented to users and it works as: link security provided by SSL and TLS, data access controlled effectively by key

authentication, internet attacks prevented by hardware devices like firewall, data storage security protected by replication

*13370154501@189.cn

International Conference on Computer Application and Information Security (ICCAIS 2021),
edited by Yingfa Lu, Changbo Cheng, Proc. of SPIE Vol. 12260, 122601R · © The Authors.

Published under a Creative Commons Attribution CC-BY 3.0 License · doi: 10.1117/12.2637687

Proc. of SPIE Vol. 12260 122601R-1

strategy.

(3) High-reliable device management: By self-registration, REST service or adding terminal devices in batches, it uses

batch commands to operate and control devices in batches and provides complete device management.

(4) Optimized asset management: It connects devices with staffs from the identity management platform, also connects

devices with asset management in the asset management platform or position between geospatial elements, which can

realize the whole life cycle management of the devices.

(5) Advanced multi-tenant pattern: It runs any number of IoT applications on a single application example and provides

independent data storage system for each tenant, so as independent and customizable event processing engine for each

tenant not affecting other tenants when starting, stopping and reconfiguring tenants.

(6) High-concurrent real-time access: It works with million-level IoT terminals, and handles high-frequency data

transmission to the system in real time.

(7) Massive data storage and processing: It provides large-scale scalable device events management and cluster

deployment scheme, integrates highly adjusted MongoDB and HBase into realization, provides time series database for

device events, and solves the problems of, with the increase of the terminals, database’s reading and writing requirements

increase sharply together with the reading and writing delay increases in traditional architectures.

(8) Device status display: It captures the current status or the past status over a certain time period of one terminal among

the million-level IoT terminals.

3. RUNNING ENVIRONMENT INDICES

The platform can be deployed in various environments, such as Windows, Linux, clouds that support Docker

environment. After performance indices test, the basic requirements of the environment are operation system: Windows

Sever 2012, hardware configuration: 32G memory, 8-core CPU, 100G hard disk.

4. THE TECHNICAL IMPLEMENTATION

4.1. Global modules

The IoT platform is comprised of several different global modules, which are connected with each other to provide core

services. All lessees are sharing the global setting. The technical framework is shown in Figure 1.

Figure 1. Technical structure.

Proc. of SPIE Vol. 12260 122601R-2

4.1.1. Web application container. The IoT platform is configured as a Web Application Archive (WAR), and it can run in

the web containers7. By changing the configuration files, the way how IoT platform deals with device issues and

integrates with external service is changed.

4.1.2. Platform server. A server is the central application that control all other modules in IoT platform. It is automatic

started in WAR file and uses Spring configuration file in conf/site/site-server.xml to boot. The server is responsible for

general system modules management, clients management and REST service.

4.1.3. System management. IoT platform includes HTML5 management application which can be used for managing

system functions. Information appeared on the application depends on login credentials and the user authority. In real

cases, one administrator with all authorities is in the IoT platform and connects with default clients.

Some aspects in this system, such as the clients and lessees, are manages in global scope. The changes in these entities

will be reflected in all lessees. Since these users can create new users and lessees, and shut down running lessees, data in

the system will be influenced if current users are deleted. Thus, the administrative access in this level should be

restricted.

The most aspects in this system are lessee oriented. Each user account can be connected with one or more lessees and is

permitted to manage several lessee information. While logging into the system, a user connected with several lessees will

be asked to select the lessees to be managed before processing. All other system data is managed in lessee level, thus, the

majority data in this management interface is depending on the user that logs in and the lessees that user selects8.

4.1.4. REST service. Most core functions that related to IoT platform API can be externally accessed via REST service.

By using REST SERVICES, external entities can create, retrieve, update and delete entities that in the system. Also, it

can interact with assets management sub-system. Authentication is a necessity for calling REST and Spring Security is

adopted to verify if the user has corresponding authority.

A formal version Swagger is included in the IoT platform and it adds a user interface around REST service. By using

Swagger interface, the running IoT platform server can execute REST API alternatively and check JSON responding.

The default Swagger URL of server is http://hostname/servername/, where hostname is for the running IoT platform

server.

4.1.5. Global data storage. When store and retrieve data, IoT platform does not deal with database. Conversely, the

system defines service provider interface (SPI) for the data manipulation of the third party, and expects that data storage

implementations satisfy all interfaces. User management data is stored under global-level configuration and based on

following API, IUserManagement: including all cure user management API, CRUD of users and authorities.

While configurating a new IoT platform server example, by changing the settings in core Spring configuration file, the

specific data storage for storage implementations is defined. Currently, data storage in MongoDB and Apache HBase are

supported.

4.1.6. Hazelcast service. Hazelcast is an in-memory data grid (IMDG). Its design involved in high performance. In defaut

situation, each Server example can act as Hazelcast example. In default global configuration, Hezelcast is loaded from

conf/servername/hazelcast.xml.

IoT platform can adopt Hazelcast to interactively broadcast event data to other systems of interest. By adjusting

Hazelcast configuration in IoT platform server, the access to Hazelcast client side is controlled, thus, only computers in

specific IP range will receive the event data.

4.2. Tenant modules

IoT Platform modules are configured on a per-tenant basis, enabling data and processing logic to be differentiated
between different users. This technical approach can realize the access and control of multiple different hardware

systems by a unified Internet of Things platform.

4.2.1. Tenant engine. Multi-tenant systems can provide multiple IoT applications for each instance. Each tenant is

configured with its own storage space to ensure data independence. Each tenant is configured with an independent

Proc. of SPIE Vol. 12260 122601R-3

processing pipeline, which can be customized without affecting other tenants. When the IoT Platform Server starts, a

default tenant user is created in the default tenant folder, and the processing logic can be configured in the corresponding

configuration file. Add and create new tenants in the IoT Platform administration application that can be dynamically

started and stopped without shutting down the server.

4.2.2. Tenant data stores. Tenant data stores can be implemented by configuring an SPI to provide a persistence service

for tenant level information such as device and asset management. The realized service interfaces are

IDeviceManagement: Manage and allocate core equipment resources, including sites, specs, devices, events, and so on.

IAssetManagement: Manage and allocate core asset resources, including asset classes and ASSET CRUD methods.

4.2.3. Communication engine. IoT Platform communication engine handles all functions related to device interaction.

Register new or existed equipment. Devices can be manually created by APIs, or they can be registered in batches.

Devices provide a unique hardware ID number and specification mark to the system, and each device has a unique ID in

the system. At startup, the specification tag indicates the type of hardware the device is using and references device

specifications that already exist on the system. A device sends a registration event when it boots or connects to the

network. IoT Platform creates a new device record or finds an existing device record and returns a response message to

the device indicating the registration status.

The event was received from the connected device. Once registered, devices can report any number or type of events to

the IoT Platform and store them. Event types include location updates, sensor measurements and other collected data, or

alerts in response to special events.

Transmits commands to connected devices. Each device registered in the IoT Platform has a device specification that is

related to the type of hardware running on the device. The IoT Platform allows you to add any number of commands in a

standardized manner, and each command can carry any number of parameters. Commands and parameters can be added

through the administrative user interface or through calling REST.

4.3. Object model

IoT Platform provides a comprehensive object model for capturing relationships between concepts in tracking device

data. The object model is used to realize unified device access, so that the access tasks of various IoT devices can be

configured, and the efficiency of device access and management is improved.

4.3.1. Site and region. Sites are used to organize related devices and view events. An example of a site application is a

location-aware device. Each site provides an entity associated with the map. When you create a site in a management
application, you can specify the map type and initial location to render the site's location event on a given map9. IoT

Platform sites group devices in the same physical location. IoT Platform management applications allow areas to be

defined based on a map associated with a site. Set the boundaries of the region through the region editor.

4.3.2. Device specifications. Specifications are used to capture the characteristics of a given hardware configuration.

Device specifications command. Device specifications can be invoked by the IoT Platform from the command list, or

they can be added, updated, viewed, and deleted from the admin interface or through REST services.

Device command invocation. IoT Platform provides API for invoking commands on a device based on a list in the device

specification. Each command invocation is captured as an event associated with the current device association. The

admin user interface and REST services allow commands to be invoked and previous calls to be searched.

Device command response. After the device processes the command invocation, it may return a response to the IoT

Platform. The command invocation message carries an originating event ID and can be sent back through any response

to correlate the response events and confirm device events, measurements, or alarm information. Users can list responses

to a given command and initiate other actions based on the response.

4.3.3. Devices and device groups. The device refers to connected sensors. Each device can be addressed with a unique

hardware ID number. New devices can be registered with this system by using a hardware ID number and device

specification token. The IoT Platform can create new device records through APIs (Application Programming Interface)

Proc. of SPIE Vol. 12260 122601R-4

to allow events to be collected for devices.

A device group is a logical unit organized by multiple related devices or subgroups. These groups can be used to perform

operations collectively rather than individually. Each group can have zero or more roles, allowing arbitrary grouping

based on needed application. A device may belong to multiple groups, and zero or more roles may be associated with the

groups.

4.3.4. Device association. Events are not directly recorded on devices. Device association is the association between

devices, sites, and related assets.

Current device status. The device association also acts as a repository for recent device state. When an event is associated

with processing, it keeps the numerical record of the recent event. By default, associations store the most recent location

metrics, the most recent values for each metric, and the most recent alerts for each alert type. Using this storage state, IoT

Platform can infer the current state of the device. The status information contains the stored date, and you can

intelligently choose when to request updated data.

Associate status indicators. Each device association also preserves the state of the association itself. By default,

associations are marked as active immediately after they are created. With REST services or administrative user

interfaces, if a device or related asset is missing, the state can be changed to missing state, and the processing logic can

be changed to missing association. The association status is updated to release at the end of the association, which

indicates that the device is no longer associated and may be re-associated.

4.3.5. Device events. Device events10 are core service data generated by the interaction between connected devices and

the IoT Platform. The IoT Platform can capture many types of events, including device measurements, device location,

device alert information, command invocation status, and command response return values.

5. DEVELOPMENT KIT

IoT platform is based on several open-source technologies. The main open-source modules adopted are as follows:

Eclipse. IT is chosen as the integrated development environment of the IoT platform.

Apache Tomcat 7. It is the core server that support the IoT platform. The platform is configurated as Web Archive (WAR

file) which runs when Tomcat server is activated.

Spring Structure. It provides the core configuration frame which allows configuration and extension. By using same

interface in customize class and inserting with Spring, the third party can extend it without referring to core code.

Spring Security. It provides the basic structure for core safety. The platform has its own clients management interface and

the Spring Security Interface at the same time, which allows it to authenticate the access to system source with existing

security modules.

Hazelcast. With the help of Hazelcast, the platform provides access to undergoing events based on subscription. External

entities can use Hazelcast app to connect with running IoT platform example, and monitor event source including the

location data, measurement, alarm and order execution.

MongoDB. It is a NoSQL database to store the platform data, with the advancement of high efficiency and good

performance.

Apache HBase. In this platform, the customized HBase mode can save the device issues as optimized clusters-crossing

time series data, thus realizing quick access to event according to the time of data collection.

InfulxDB/Grafana. The platform can store equipment management data in MongoDB and event data in InfluxDB by

using mix methods. Thus, the data visualization can be realized using the tools like Grafana.

6. TYPICAL APPLICATION SCENARIOS

Nowadays, the application of IoT terminals has increased day by day. The development of IoT technology has widely

changed our daily like and working style. The proposed IoT platform can be adopted in different industries. Almost all

industries can benefit from it for it brings convenience in monitoring, automation, and analysis. Some important

Proc. of SPIE Vol. 12260 122601R-5

application scenarios are listed as follows:

(1) Port application. The data collected by equipment of the port can be uploaded to the platform and stored in time series

database. The standardized data interface can guarantee the security of data.

(2) Campus Security. The terminal can upload data to applications with television, PC, MMS and videophone. The

terminal can upload data to Web server for users to remote browse data with web explorer.

(3) Digital Warehouse. With the help of IoT platform, a series of automatic operation can be realized, such as tag

initialization conversion, automatic warehouse in and out, equipment location tracking, hand-held terminal query and

security lock.

(4) Smart Transportation. The terminal can collect vehicle information with corresponding equipment and upload it to

IoT platform with wireless modules.

(5) Intelligent Agriculture. The data collecting terminals includes temperature/humidity sensor, soil temperature sensor,

soil moisture sensor, greenhouse illumination sensor, video camera, etc. The collected data can be transferred to IoT

platform via ZigBee wireless communication and 4G network to proceed data analysis and association.

7. CONCLUSIONS AND BENEFITS

There are a variety of sensing terminals and network access devices on the Internet of Things, data models and interface

protocols are not unified, and device performance architectures vary greatly. Projects involving multi-system IoT

equipment often need to put a lot of effort into equipment access and joint adjustment. By studying the IoT platform for

multiple application scenarios, this paper solves the data access problem of highly concurrent IoT sensing devices, and

can parse the formatted and encapsulated values in real time and then push them to the business application system, so as

to meet the requirements of various typical business scenarios. The IoT Platform can access and parse new device data in

a simple and configurable way. It features cross-platform, high concurrency, and high security, and has certain

application value.

REFERENCES

[1] Zhao, X., “Development and application of computer Internet of things,” Electronics World, 39(1) 47-48

(2017).

[2] Zhang, L., “Computer communication and detection technology in Internet of Things system,” Information

Record Materials, 22(7), 202-204 (2021).

[3] Fan, Y., “Research on computer communication network under the influence of Internet of Things,” China New

Communication, 23(6), 36-37 (2021).

[4] Sun, S., “Application of computer hardware and communication network technology in Internet of Things,”

Electronic Technology and Software Engineering, (4), 13-14 (2021).

[5] Li, H., “Design and implementation of virtual control panel for testing equipment based on cloud platform,”

China Equipment Engineering, (7), 154-156 (2021).

[6] Liu, Z., Wang, D., Yang, J., et al., “Research on intelligent equipment management system based on cloud

platform,” Modular Machine Tool & Automatic Manufacturing Technique, (2), 165-168 (2021).
[7] Han, J., “Top architecture design of IoT platform management system for radio monitoring station,” Internet of

Things Technology, 11(1), 54-58 (2021).

[8] Lu, W., “Application of intelligent asset management based on Internet of Things,” Electronic Testing, (15),

87-88 (2020).

[9] Hu, X., “Exploring key technologies of Internet of Things and application of computer Internet of

Things,” Computer Products and Circulation, 35(5), 63 (2018).

[10] Peng, S., “Research on construction of general Internet of things application software practice platform,”

Electronics World, 42(3), 67-68 (2020).

Proc. of SPIE Vol. 12260 122601R-6

