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ABSTRACT 

Simultaneous localization and mapping (SLAM) based on 2D lidar is the vital technology for indoor mobile robot 

mapping and navigation, and graph optimization has become a common method to solve this problem in the recent years. 

In graph-based SLAM, loop detection is a key step to obtain global pose constraints, and the real-time performance of 
this process ensures that the back-end optimization of the current frame can be completed smoothly before the arrival of 

the data for the next moment. However, due to the limitation of mobile robot's computing resources, when the global 

map reaches a certain scale, the success rate of loop detection which has a positive impact on the mapping accuracy will 

decrease with the number of loop constraints is directly proportional to the number of all poses. Therefore, we propose a 

self-adaptive matching method based on genetic algorithm (GA) to calculate the loop closure constraints between the 

current scan and each local map, so as to speed up the loop detection process. The experimental result shows that our 

method is superior to the traditional graph-based SLAM solutions in large scale map construction.  
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1. INTRODUCTION 

Indoor robot is an important research direction in the field of artificial intelligence. Environment perception, decision 

making and motion control are the basic steps for robot to realize intelligent operation. Simultaneous localization and 

mapping (SLAM) is the behavior that autonomous mobile robots use sensors to obtain the range information of the 

surrounding environment in an unknown scene for constructing the environment map while localizing. SLAM 

algorithms based on 3D lidar1 and multi-sensor fusion2 are research hotspots in the past few years, but 2D lidar makes 

2D SLAM a good choice for indoor mapping3 because of its low cost and simple implementation. 

Most of the early 2D SLAM methods are built map by direct matching, for example, reference4. Iterative closest point 

(ICP) is one of the most widely used algorithm, which finds the best pose transformation to align the two adjacent laser 

point cloud data by iterative solution, and the sum of the pose transformation at each time is the motion path of the robot. 

However, these methods can not eliminate the errors caused by the completed local matching, and the cumulative error 

will cause a significant drift when building large-scale maps.  

Filter-based SLAM is based on the Bayes’ law, and can be expressed by the prior and posteriori probabilities. The 

Gmapping algorithms based on extended Kalman filter (EKF) and particle filter5 are the main branches of this method. In 

this algorithm, the particle filter needs to maintain the system state of each particle at each moment, which will cause 

generous computing consumption with the growth of map scale until it is unbearable. 

The graph-based SLAM corrects the pose estimation of the robot by using the observation of the sensor. In this method, 

the trajectory of the robot is represented by the pose graph and the global pose is optimized according to all the 

constraint relations in the graph. In the widely used graph-based SLAM algorithms, such as Karto, the global loop 

constraints are usually obtained by correlative scan matching (CSM). CSM6 is a probabilistically motivated matching 

algorithm, which uses exhaustive search to find the optimal pose transformation with the highest response value in the 

search space. It also uses multi-resolution searching strategy and look-up table to speed up the searching process. This 

matching method improves the robustness of loop construction, but in the case of limited computing resources, the high 

time complexity will limit the number of loop constraints, which is especially obvious in large-scale map construction. 

Genetic Algorithm is a kind of heuristic which can find the optimal solution in the global search space by genetic 

iteration in a short time and is not easy to fall into the local minima. GA is used in combination with SLAM in reference7, 
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which speeds up the optimization process of scan matching and improves the overall efficiency of SLAM. In this paper, 

we first give an overview and theoretical analysis of the graph-based SLAM system, and propose a self-adaptive loop 

matching method based on genetic algorithm for the back-end loop detection process of SLAM, which takes into account 

both the efficiency and accuracy of the matching process. We use the open source map data set for comparative 

experiments to verify the optimization effect of our algorithm in map construction

2. GRAPH-BASED SLAM SYSTEM 

Our SLAM method uses 2D LiDAR to obtain the distance information of the surrounding environment, and uses 

odometer to provide pose estimation in advance. The whole SLAM system is functionally composed of two parts, the 

front-end and the back-end.  

2.1 Front end of SLAM 

The task of the front end of the SLAM system is to find the optimal pose estimation 𝛿 = (𝛿𝑥 , 𝛿𝑦 , 𝛿𝜃) of the current 

frame in the local map, which includes the translation component (𝛿𝑥 , 𝛿𝑦) and rotation component 𝛿𝜃, and insert the 

laser scanning data to the maintaining local map. Through the correlative scan matching (CSM), we can combine the 

predicted values obtained by odometer with the observed values obtained by lidar to get the pose estimation at the 

current moment.  

Correlative scan matching. Correlative scan matching is a scan-to-map matching algorithm which solve the problem in a 

probabilistic way. The goal of CSM is to find the optimal pose �̂� of the current frame in the local map that maximizes 

the probability of observing the objects. A rectangular area centred on the location estimated by the odometer is used to 

represent the possible extent of the final location. When matching begins, this region was exhaustive searched in (x, y, θ) 

windows for obtaining the location 𝛿 with the highest response value. 𝑀(𝑝) is the probability function of the grid 

point in the local map, and 𝑇𝛿 is the transformation matrix of pose 𝛿. The optimal pose �̂� can be computed by: 

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥
𝛿

 ∑ 𝑀(𝑇𝛿𝑝𝑗)

𝑁

𝑗=1

                                                                             (1) 

𝑇𝛿 = [
𝑅 𝑡
0𝑇 1

]                                                                                    (2) 

CSM also presents a multi-resolution searching strategy and uses lookup table that project the laser data in advance for 

better real-time performance, and specific theoretical details can be referred to Olson’s paper.    

2.2 Back end of SLAM 

With the passage of time, the measurement error of odometer and the calculation error of scan matching will gradually 

accumulate, which greatly reduces the mapping accuracy of the system. We can eliminate these errors as much as 

possible through global pose graph optimization and loop closure detection. Pose graph optimization can be formulated 

as a nonlinear least squares problem: 

𝑥 = argmin
𝑥

∑ 𝐸𝑖(𝑥)                                                                              (3) 

𝐸𝑖(𝑥) = 𝑒𝑖(𝑥)𝑇Ω𝑖𝑒𝑖                                                                                 (4) 

where 𝑥 is the estimated pose of robot, and 𝑥 is the optimized pose. Ω𝑘 is the information matrix. The goal of graph 

optimization is to minimize the sum of 𝑒𝑖(𝑥) which represents the error between observations 𝑧𝑖  and predictions 𝑓𝑖(𝑥), 

it can be computed by: 

𝑒𝑖(𝑥) = 𝑧𝑖 − 𝑓𝑖(𝑥)                                                                          (5) 

𝑓𝑖(𝑥) = [
𝑅𝑖

𝑇(𝑡 − 𝑡𝑖)

𝜃 − 𝜃𝑖

]                                                                        (6) 

Sparse pose adjustment (SPA) is used to solve the nonlinear optimization problem, and we use loop closure detection to 
detect loops which will be regarded as the observation constraints in the graph optimization problem. Traditional 

graph-based SLAM methods use correlative scan matching method to detect and compute the optimal loop closure 
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constraints, it leads to a high quality of matching results at the cost of computation time which will cause the decrease of 

loop detection efficiency that benefit the global mapping accuracy. In order to speed up the matching process, we 

propose a GA-based self-adaptive matching strategy for the optimal poses in the relevant local maps.  

3. GA-BASED SELF-ADAPTIVE LOOP CLOSURE DETECTION AND MATCHING 

3.1 GA-based matching approach 

By speeding up the loop closure matching process at the back-end, the frequency of loop detection will increase, which 

can improve the mapping accuracy with more loop constraints when the global map grows large. We achieve this by 

using the detection and matching method based on Genetic Algorithm. 

Determining the searching window. For the scan matching problem, we can use Ѡ as the search window, we set the 

linear and angular search window offsets Ѡ𝑥 = Ѡ𝑦 =8 m and Ѡ𝜃 = 30°. The linear search resolution is 𝑟𝑡 , so we can 

choose the angular search resolution 𝑟𝜃 as:  

𝑟𝜃 = cos−1 (1 −
𝑟𝑡

2

2𝑑𝑚𝑎𝑥
2

)                                                                          (7) 

where 𝑑𝑚𝑎𝑥 is the maximum range of scan points. We can get the integral number of steps covering given linear and 

angular search window sizes: 

𝑛𝑥 = ⌈
Ѡ𝑥

𝑟𝑡

⌉,   𝑛𝑦 = ⌈
Ѡ𝑦

𝑟𝑡

⌉,   𝑛𝜃 = ⌈
Ѡ𝜃

𝑟𝜃

⌉                                                            (8) 

Chromosome coding. We first expand the linear search space in two dimensions to one dimension for representation, i.e., 

converting set 𝒩 = {−𝑛𝑥 , … , 𝑛𝑥} × {−𝑛𝑦 , … , 𝑛𝑦} into linear index ℒ̅ of one dimension, the range of ℒ̅ is 0~2𝑤𝑥 ∙

2𝑤𝑦. Assume the coordinate of search centre is 휀0(𝑥0, 𝑦0), we can get the linear index of point 휀𝑝(𝑥𝑝, 𝑦𝑝) as: 

ℒ̅𝑝 = ⌊
𝑦𝑝 − 𝑦0 + Ѡ𝑦

𝑟𝑡

⌋ ∙ 2𝑛𝑥 + ⌊
𝑥𝑝 − 𝑥0 + Ѡ𝑥

𝑟𝑡

⌋                                                            (9) 

And we use ℒ̅𝑚𝑎𝑥 to represent the max value of ℒ̅, which is 2𝑛𝑥 ∙ 2𝑛𝑦. In terms of the angular search window, angular 

index ℛ̅ is created to represent the rotation component and the max value ℛ̅𝑚𝑎𝑥 = 2𝑛𝜃.  

In the coding step, it is necessary to ensure that the chromosome can represent all the 𝑥, 𝑦 and 𝜃 in the feasible 

solution for global optimization. Let the length of the chromosome be 𝑙 = 𝑙1 + 𝑙2, where the length of the left part is 𝑙1 

and the length of the right is 𝑙2. In order to ensure that the genetic algorithm can reach any position of the feasible 

solution, the 𝑙1 and 𝑙2 must satisfy: 

2𝑙1 > ℒ̅𝑚𝑎𝑥 , 2𝑙2 > ℛ̅𝑚𝑎𝑥                                                                      (10) 

Fitness function. Response value 𝑅𝑣 for scan matching is taken as fitness function in the GA, 𝑔𝑜𝑎𝑙𝑖  is the probability 

value of scan point 𝑝𝑖, and 𝑔𝑜𝑎𝑙𝑚𝑎𝑥 is the max response value with all the scan points hit surrounding objects. 

𝑅𝑣 =
∑ 𝑔𝑜𝑎𝑙𝑖

𝑛
𝑖=0

𝑔𝑜𝑎𝑙𝑚𝑎𝑥
                                                                                 (11) 

Genetic operator. Genetic operators include mutation operator, selection operator and crossover operator. The 

conventional roulette strategy is used for selection operation, and the two-point crossover is employed for crossover 

operation. The mutation operation adopts the basic position mutation method. Considering the discontinuity of the 
matching process, the crossover rate should be reduced and the mutation rate should be expanded, which can prevent the 

genetic algorithm from falling into local iteration. 

Chromosome decoding. After chromosomes (𝑖, 𝑗) = (𝑖1𝑖2 ⋯ 𝑖𝑙1
, 𝑗1𝑗2 ⋯ 𝑗𝑙2

) was obtained by crossover, mutation, and 

selection, the corresponding linear and angular index needs to be calculated from equations below, this is the decoding 

process of chromosomes.  
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ℒ̅ = ∑ 𝑖𝑘 ∙ 2𝑘

𝑙1−1

𝑘=0

,   ℛ̅ = ∑ 𝑗𝑘 ∙ 2𝑘−𝑙1

𝑙2+𝑙1−1

𝑘=𝑙1

                                                         (12) 

3.2 Self-adaptive matching strategy 

In the process of loop detection, GA-based matching method can significantly improve the matching efficiency. 

However, when the geometric structure of the surrounding environment of the robot is relatively simple, it is difficult to 

find a sufficient number of loops, at this time the accuracy requirement of loop matching is more important than its speed 

requirement. Genetic algorithm, as a global heuristic approach, has a higher optimization speed than exhaustive search. 

But this method can’t guarantee the final result to be globally optimal as exhaustive search. In view of the above 

situation, we make a compromise between matching speed and matching accuracy, and propose an adaptive matching 

strategy based on the expected number of loops to meet the actual needs of robots in different scenes. The actual number 

of loops at the current time can only be known after all the loop detection and matching are completed, and impossibly 

be calculated in advance. For this reason, we define the loop closure factor Ψ to estimate the degree of difficulty in loops 

detection. The loop closure factor Ψ𝑘 at the current time can be calculated by the following equation: 

Ψ = η ⋅
∑ 𝐶𝑖

𝑘−1
𝑖=𝑘−𝐾

𝐾
                                                                          (13) 

η =
∑ 𝑑𝑗

𝑘
𝑗=0

||𝑡𝑘
′ − 𝑡0||

                                                                             (14) 

where 𝐶𝑖 is the number of loop constraints at each time before the current moment, and its average value represents the 

preliminary prediction of the loop number at the current time. The loop gain η indicates the degree of geometric loop of 

the surrounding environment, which is essentially the ratio of mileage scalar to distance vector. 𝑑𝑗  is the measurement 

of odometer at each time, 𝑡0 is the translation component of robot pose at the beginning moment, and 𝑡𝑘
′  is the 

translation component of the estimated pose obtained by the front-end at the current time. In order to achieve 

self-adaptive matching in different environments, we set thresholds Ψ1 and Ψ2, where Ψ1 < Ψ2. If Ψ ≤ Ψ1, the value 

of loopback detection is beneath expectation, so we could complete the matching through CSM to ensure the matching 

accuracy. When Ψ1 < Ψ < Ψ2, we adopt a compromise of using exhaustive search in the rough matching stage of CSM 

and GA-based search in the fine matching stage. If Ψ ≥ Ψ2, only GA based matching method is used to find the optimal 

solution in the search space.                                                                                                                                                                                                                                                                                                            

4. EXPERIMENTAL RESULTS 

In this section, we use the benchmark measure toolkit provided by University of Freiburg to compare our method to 

other 2D lidar algorithms. The benchmark evaluates SLAM algorithms by comparing the relative displacements of 

estimated poses with the corresponding ground truth relations which is manually aligned by hand. We use the Radish 

data set which contains several typical indoor maps (shown in Figure 1) to conduce our comparative experiment, and our 

SLAM system is running on an Intel i5-3230M CPU with a single thread for backend processing.                                                                          

 

Figure 1. 2D map of intel research lab with manually aligned ground truth relations. 

Proc. of SPIE Vol. 12260  122600D-4



Table 1 shows the simulation results of comparing our algorithm with the traditional graph-based Karto SLAM. The 

errors contained in the tables are divided into translational and rotational, which can comprehensively evaluate these 

algorithms. And the same test of the Radish data set which is displayed in Table 2 evaluates our algorithm with the 

Gmapping SLAM. Whether compared with traditional graph-based SLAM or Gmapping based on particle filter, it can be 

seen from the simulation results in the tables that the GA-based algorithm has a certain improvement in error elimination 

and mapping accuracy. 

Table 1. Dataset test of the GA-based graph SLAM and Karto. 

 
Absolute 

translational (m) 

Squared translational 

(m
2
) 

Absolute rotational 

(deg) 

Squared rotational 

(deg
2
) 

Aces building 

GA-based 
0.238 ± 0.533 0.411 ± 2.320 0.336 ± 0.829 1.056 ± 4.714 

Karto 0.408 ± 1.325 1.604 ± 7.009 0.440 ± 0.683 0.874 ± 3.295 

Intel Lab GA-based 0.165 ± 0.470 0.306 ± 1.924 1.253 ± 2.866 8.632 ± 25.707 

Karto  0.207 ± 0.823 0.702 ± 3.204 1.875 ± 3.830 16.170 ± 83.348 

MIT Killian 

GA-based 
0.249 ± 0.608 0.507 ± 2.692 0.357 ± 1.433 1.734 ± 4.635 

Karto 0.350 ± 0.752 0.608 ± 3.159 0.755 ± 2.514 7.548 ± 22.900 

Table 2. Dataset test of the GA-based graph SLAM and Gmapping. 

 
Absolute 

translational (m) 

Squared 

translational (m
2
) 

Absolute rotational 

(deg) 

Squared rotational 

(deg
2
) 

MIT CSAIL 

GA-based 
0.226 ± 0.482 0.384 ± 1.815 0.522 ± 2.054 4.732 ± 12.788 

Gmapping 0.443 ± 0.879 2.175 ± 8.033 1.216 ± 3.724 14.915 ± 77.362 

Freiburg building 

GA-based 
0.328 ± 0.859 0.930 ± 3.556 0.921 ± 3.714 11.408 ± 33.224 

Gmapping  0.507 ± 1.074 3.404 ± 14.538 1.030 ± 2.715 8.799 ± 17.036 

Freiburg hospital 

GA-based 
0.575 ± 0.836 1.255 ± 3.880 1.457 ± 2.602 10.575 ± 52.016 

Gmapping 0.873 ± 2.825 8.239 ± 34.372 2.609 ± 5.330 34.152 ± 142.274 

5. CONCLUSIONS 

In this paper, we give a systematic overview and theoretical analysis of the current mainstream graph-based 2D SLAM 

scheme and elaborate the corresponding functions and implementation of the front end and the back end of the SLAM 

system. Aiming at speeding up the loop detection process of back end, we propose an GA-based self-adaptive loop 

matching algorithm which can enhance the construction efficiency of loop constraints in the scenario with a large 

number of loops, and finally improve the global mapping accuracy. The simulation result shows that our algorithm 

outperforms the traditional graph-based 2D SLAM in large scale indoor environment. 
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