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ABSTRACT   

EYE-Sense is a Web-GIS platform which allows for easy access to valuable socio-economic insights from Earth 

Observation (EO) data by offering a code-less approach. The platform enables users to access various EO parameters, such 

as atmospheric and water quality indexes, and night-light activity. Moreover, the platform's pre-trained computer vision 

models (Faster-RCNN, Mask-RCNN, and YOLO) empower users to detect objects such as, e.g., airplanes, ships, 

containers, and beach umbrellas, to address specific user-based tasks. To provide cost-efficiency, scalability, flexibility, 
and easy maintenance, EYE-sense adopts a serverless architecture, leading to up to 50.4% processing cost reduction when 

compared to traditional server-based solutions. By bridging the gap between data gathering and processing, EYE-Sense 

extends the reach of Earth observation data to a broader audience. 

Keywords: Earth Observation, socio-economic activity, computer vision, web-gis, object detection, satellite images, 

serverless 

 

1. INTRODUCTION 

 

In a little more than a decade, the space sector has experienced considerable development throughout the world, with 

greater impacts on the larger economy, further boosted by both globalization and digitalization. In the context of the 

growing interest for the so-called “Space Economy”, there is an increasing awareness of the importance of the utilization 

of the available space assets for the global and local economy. There is a significant number of indirect parameters 

observable from space (EO parameters) that can be correlated to a variety of phenomena ranging from the impact of natural 

and man-made disasters on the macro/micro economy, to the progression of diseases such as Covid-19. Following on this 

example, one could investigate how classical environmental parameters (geographical, geomorphological, climatological 

and hydrogeological), and tracers of the human-induced impact on the environment (urbanization, pollution, heat) can be 

associated with economical parameters of human activities impacted by the epidemic, including transportation, industry, 

tourism and trades.  Specific proxies tracing the evolution of the epidemic could be, e.g., the increase of heat production 
of crematories or the tourism indicators (such as beach occupancy). More generically, EO parameters may include 

monitoring of the levels of suspended pollutants, heat distribution around cities and industrial areas, percentage of transport 

container occupancy in the yard of industrial harbors, airports and the like. All these “observables” can be correlated to 

macro parameters, which in turn allow to study the progress of an epidemic and its impact on the economy at different 

scales. Although remote sensing methodologies have been – and are normally – employed to monitor local and global 

critical situations (from natural disasters1 to environmental impact), their application to the monitoring of the economy has 

been limited to the agricultural3 sector. Moreover, the analysis method has been mostly limited to the visual inspection of 

satellite images2. However, space technology combined with Machine Learning (ML) and Deep Learning (DL) could not 

only represent a powerful tool to monitor near real-time natural and man-made disasters, and economic trends but also to 

analyze complex data. Public Authorities, researchers, and private actors operating in the field of economy and finance are 

strongly interested in how space technologies can be linked to socio-economic factors and provide updated nowcasting 

and forecasting assessment. Up to now, there has been no systematic use of the space asset to monitor features from space 
that are linked with well-established econometric and epidemiology models. In fact, the correlation between what can be 

seen – and continuously monitored – from space and key econometric indicators of economic trends at different 
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geographical scales has not been addressed yet. EYE-Sense’s great potential for scientific breakthroughs lies in its 

multidisciplinary approach, linking Geographic Economy with state-of-art engineering methodologies and tools. EYE-

Sense can provide real time indicators of the spread of the epidemic, and its impact on the economy, in those countries and 

geographical areas experiencing Covid-19 outbreaks, where direct information and data are not fully reliable and/or 

provided with large delay. 

 

2. MOTIVATION 

 
A significant body of research has demonstrated the link between indicators of atmospheric4,5 and water quality6,7 and 

economic activity in an area. For example, cities with high level of economic activity are often subject to environmental 

regulations designed to reduce pollution and protect public health. Such regulations may impose costs on businesses, which 

in turn can affect economic activity. Areas with poor air quality may be less attractive to tourists and investors, which can 

have negative economic consequences as well. Regarding the water quality indicators, such as chlorophyll-a and suspended 

matter, clean and clear water is often an important factor in the attractiveness of a region in terms of tourism and 

recreational activities, such as swimming, boating, and fishing. High levels of chlorophyll-a or suspended matter can reduce 

water clarity, making it less attractive for tourists and reducing the economic benefits of these activities. Nighttime lights 
8,9 (NTL) captured by satellite images of the earth, have been used as an indicator of economic activity and they can be 

exploited to track the growth of urbanization and population density, as cities tend to have larger radiance than rural areas. 

The more urbanized an area is, the more likely it is to have higher levels of economic activity, such as trade, manufacturing, 
services, or tourism. EO parameters can be associated to Maritime traffic10,11 and aviation12,13 as a proxy for touristic 

activity, trade and exchange. Fluctuations in the number of containers14,15 located in a port or other depots can be associated 

with macro-economic trends. When the economic activity is high, the volume of goods being transported increases, 

resulting in more containers being moved through ports and other depots, and vice versa. In addition, container traffic can 

be used to monitor changes in consumer demand and production levels. We have steeled on several potential candidates 

supported by the relevant literature. Namely, we considered: ship, aircraft, and container count (direct proxies of transport 

and trade activity), temporal evolution of beach umbrella count (proxy of touristic activity), water and atmosphere quality 

indicators (proxies for pollution), and NTL (proxy of human population or activities).  

 

3. THE PLATFORM 

 
EYE-Sense is a web-based decision support system for integrated socio-economic analysis based on geo-informatics, deep 

learning (computer vision), and information technology modeling.  EYE-Sense was developed with the intention of 
assisting interdisciplinary research, and allowing an individual to access information that would traditionally require a 

strong technical background to obtain. As described in the earlier section, according to literature, there are several EO 

parameters that could provide insight regarding the economic trends of an area. Figure 1, presents a comprehensive 

summary of the EO parameters that are being provided as micro-services. In the following subsections, we will thoroughly 

describe the details of these microservices, the processing pipelines, the data sources, and the technical implementation 

details. Moreover, we demonstrate how our serverless computing architecture provides cost-efficient and scalable 

processing capabilities. Finally, we showcase the user-friendly interface that allows users to effortlessly access and analyze 

key indicators without prior technical expertise.  

3.1 Data sources and processing chains  

3.1.1 Ship Detection – Counting as Maritime Activity Indicator 

This workflow is designed to provide the user with the number of ships detected in a specified Area Of Interest (AOI) and 
time interval. Our detection tool is based on YOLOv516, a fast object detection model. Our model has been fine-tuned on 

an annotated dataset of Sentinel-1 images containing ship locations (SSDD)17. Sentinel-1 is a radar satellite mission 

developed by the European Space Agency (ESA) that provides high-resolution images of the Earth's surface.  EYE-Sense 

can automatically detect ships in unseen Sentinel-1 images with a high degree of accuracy (97%). The detection pipeline 

initiates by acquiring a specific Sentinel-1 image. Next, the image is pre-processed via cropping, calibration, speckle 
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filtering, and terrain correction. Image calibration is necessary to adjust and standardize the satellite image to remove any 

distortions or anomalies caused by atmospheric conditions and sensor characteristics. Speckle filtering is used to remove 

noise from the images and enhance the signal-to-noise ratio. Terrain correction is necessary to account for any variations 

in the Earth's surface, which can affect the radar signal. The pre-processed image is then passed as input on the fine-tuned 

model. As an output to the user, EYE-Sense creates and displays time-series data depicting the object counts over a 

specified time interval. 

 

Figure 1. Details of the input/output for the provided services, along with technical implementation information. 

3.1.2 Aircraft/ Trucks / Containers / Umbrellas Detection - Counting 
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This workflow is designed to detect objects in a Very High-resolution satellite image provided by the user. The user 

designates the type of object they intend to detect, selecting from four available options: ships, aircrafts, umbrellas, and 

containers. Depending on the type, the appropriately pre-trained model is selected to perform the detection task (Table 1). 

Different models are employed for each object type due to performance considerations and the ease of training specialized 

models, resulting in enhanced efficiency and effectiveness. For the detection of ships, and aircraft, the Faster R-CNN18 
model pre-trained on the DOTA19 dataset is selected. Faster R-CNN is a state-of-the-art object detection algorithm 

composed of two elements: 1) a region proposal network which generates candidate object locations, and 2) a classification 

network which labels each candidate as “object” or “background”. The DOTA dataset contains annotated satellite images 

with various types of objects, including vehicles, ships, and aircraft. For the detection of umbrellas, a Mask R-CNN20 

model is used. Mask R-CNN is an extension to Faster R-CNN which adds a segmentation network to the architecture, 

allowing it to predict object masks in addition to bounding boxes and class labels. Finally, for the detection of containers, 

a custom YOLOv5 model is used. YOLOv5 relies on a single neural network to predict both bounding boxes and class 

probabilities for objects in an image. The custom YOLOv5 model is trained on a dataset of annotated satellite images 

including containers22. Once the appropriate model has been inferred, the image is parsed to detect the selected object. The 

results can be provided to the user either as an image with the detected objects highlighted, or as a .txt file in COCO format, 

a standard format for object detection results which includes bounding boxes, class labels, and confidence scores. 

Assuming that a user has multiple VHR images of the same region, the described workflow can be used iteratively to 

construct time-series data. 

 

Table 1: Datasets and models used for each object’s detection. 

Object Dataset Model Accuracy 

Aircraft DOTA19 , rareplanes21 Faster-RCNN 99%  

Ships DOTA Faster-RCNN 96% 

Umbrellas World-View-3 Annotated Images23  Mask-RCNN 75% 

Containers Dataset for detecting buildings 

containers cranes in satellite images22 

YOLOv5 86% 

 

3.1.3 Atmospheric quality analysis 

The designed workflow aims to provide users with time series data pertaining to various atmospheric indicators, for a 

specified Area Of Interest (AOI). Users are required to input the AOI and select the desired atmospheric indicators from a 

list of six options: Sulfur dioxide (SO2), Carbon monoxide (CO), Nitrogen dioxide (NO2), Formaldehyde (HCHO), 

Aerosol Optical Depth at a wavelength of 550nm (AER_AI), and Ozone (O3). Furthermore, users are given the option to 

choose the frequency at which the analysis should be conducted, such as on a weekly, biweekly, or monthly basis. Utilizing 

the Google Earth Engine24 platform, Sentinel-5p satellite data is harnessed and processed to generate the requested time-

series information. The Sentinel-5p satellite mission, developed by the European Space Agency (ESA), delivers high-

resolution data on atmospheric composition. EYE-Sense extracts pertinent data for the specified atmospheric indicators 

from the Sentinel-5p satellite dataset. Employing the mean reducer offered by the Google Earth Engine (GEE), a single 

value (the mean value) is derived for the area of interest concerning each atmospheric indicator chosen by the user. 
Subsequently, these values are employed to produce a time-series for the atmospheric indicators at the specified frequency 

of analysis. 

3.1.4 Water quality analysis 

The Water Quality Analysis workflow provides users with EO parameters that may potentially correlate with the economic 

activity of a specified area. To initiate the analysis, users provide an AOI and time interval. The relevant multi-band spectral 

images produced by the Sentinel-2 mission (providing high-quality and frequent observations of the Earth's surface) are 

dynamically acquired. Specifically, we retrieve the data through the Google Earth Engine, which allows for efficient 

processing and analysis of extensive data volumes.  
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By adopting several literature prescriptions25,26  – based on the Sentinel-2 bands – we created indicators correlated with 

water quality parameters, including Chlorophyll-A, Cyanobacteria, Turbidity, Dissolved Organic Carbon, and Color 

Dissolved Organic Matter. The details of these formulas are presented in Table 2. The Normalized Difference Water Index 

(NDWI) is utilized to mask land and retain only water areas. The most suitable prescription is applied to compute the 

indicator value for each time-step, depending on the user's selection. Google Earth Engine's (GEE) mean reducer is 
employed to obtain a single value (the mean value) for the area of interest concerning each water quality indicator chosen 

by the user. These values are then harnessed to produce time-series data of the water quality indicators for the specified 

frequency of analysis. Users can visualize the derived time-series on an interactive map or download it in a .csv format. 

Table 2: Water quality analysis information. 

Parameter Chlorophyl-A Cyanobacteria 
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3.1.5 Night-light activity analysis 

The Nighttime lights (NTL) Analysis workflow providing users with an economic-related parameter indicator for a 

designated area, is arguably the most valuable EYE-Sense tool, and it is showcased in Section 4. To acquire high-quality 

NTL data, we rely on Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB)27 satellite data. 

Specifically, we access the VIIRS DNB database through the Google Earth Engine platform, allowing us to effectively 
process and analyze large amounts of data. To initiate the analysis, users first set the Area of Interest (AOI) by uploading 

a file in GeoJSON format. VIIRS DNB data is subsequently retrieved from the Google Earth Engine data catalog, and 

preprocessed to remove any faulty values or interference, which is achieved by comparison against a supplementary dataset 

such as the VIIRS DNB straylight corrected dataset. Temporal aggregation is executed using Google Earth Engine's 

reducer functions like mean, max, and min. After completing data pre-processing and temporal aggregation, time-series 

analysis can be pursued, and the data for the chosen AOI can be either visualized or exported in a .csv format. 

3.2 Platform architecture 

In this section, we provide a technical implementation overview of each microservice. EYE-Sense consists of six 

microservices, each designed to handle a specific type of analysis.  We describe the backend frameworks, external libraries, 

and tools used in each microservice, as well as any design considerations and challenges faced during the development 

process.  An overview of these microservices, along with a small description of their workflows, is depicted in Figure 2. 

The microservices have been extensively presented in Section 3.1 – In summary: Ship Detection, employs Sentinel-1 
images to identify the presence of ships within a specified area; Very High-Resolution Object Detection, is capable of 

detecting aircrafts, containers, umbrellas, and ships, within high-resolution satellite imagery; The remaining three 

microservices, i.e., NTL  Analysis, Atmospheric Analysis, and Water Quality Analysis, all leverage Google Earth Engine. 

NTL Analysis infers urbanization and economic activity, Atmospheric Analysis infers air quality, and Water Quality 

Analysis infers water pollution assessment. The final microservice encompasses the frontend, offering an intuitive, user-

friendly interface that enables users to engage with the other microservices and visualize results in real-time. Through the 
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incorporation of modern visualization libraries and a responsive design, our platform aims to deliver a robust tool for 

comprehensive data analysis and exploration. 

 

 

 

Figure 2. Platform architecture. 

 

 

3.2.1 Microservices Technology Stack 

Let’s now delve into the technology stack employed for the development of each individual microservice. A schematic 

depiction can be seen in Figure 3. The Ship Detection microservice serves as a REST API that offers ship detection 

functionality for a specified area. It utilizes the fastAPI backend framework28, a modern Python web framework is 

renowned for its exceptional performance and user-friendliness. The API calls for the Sentinelsat-API29 to obtain Synthetic 
Aperture Radar (SAR) images from Sentinel-1, which are subsequently preprocessed via the snappy toolkit30 to furnish 

the required inputs for a YOLOv5 object detection model implemented in PyTorch. The Very High Resolution (VHR) 

Object Detection microservice,  functions as a REST API for detection in VHR images. The backend framework employs 

fastAPI. For umbrella detection in VHR images, we utilized the Mask-RCNN model implemented in PyTorch. A YOLOv5 

model, also implemented in PyTorch, was employed for container detection. In the case of aircraft and ship detection, we 

used a Faster-RCNN model from the MMDetection framework31, a widely-used open-source object detection toolbox. 

NTL Analysis, Atmospheric Analysis, and Water Quality Analysis all exploit Google Earth Engine to acquire data from 

distinct datasets. Despite their varying data sources, these microservices are structured similarly and constructed using 
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fastAPI. The output results from each microservice are presented as a pandas dataframe in JSON format, offering a flexible 

and user-friendly format for data analysis and visualization. 

 

 

 

Figure 3. Technology Stack Details. 

 

One of the main design considerations for all these five microservices was scalability. The ability to process large volumes 

of data quickly and accurately was a top priority, as the datasets used in these microservices can be quite large. We also 

focused on making the microservices modular and easy to integrate with other applications and platforms. One challenge 

faced during the development of these microservices was optimizing the data processing pipeline to ensure speed. 
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Additionally, working with large datasets can be computationally intensive, so we had to carefully balance computational 

resources with the need for accurate results. Moreover, ensuring that the models in the Ship Detection and VHR Object 

Detection microservices remained accurate while maintaining real-time performance was another challenge that we 

overcame through model selection, fine-tuning, and optimization. The Frontend is built on top of Streamlit32, a Python 

library that allows for the creation of interactive web applications. Several visualization libraries were utilized, such as 
Plotly33 and LeafletJS34, to create an intuitive and user-friendly UI experience. Plotly allows for the creation of interactive 

charts and graphs, while LeafletJS provides a flexible mapping library for visualizing geospatial data. The frontend 

provides a streamlined and intuitive way for users to interact with the data and makes it easy to explore different 

visualizations and insights. One of the main design considerations for the Frontend was creating a responsive and visually 

appealing interface that would be easy for users to navigate. We focused on creating a design that would be both functional 

and aesthetically pleasing, while also ensuring that the interface was intuitive and easy to use. We also had to ensure that 

the interface was responsive and performant, even when dealing with large datasets or complex visualizations. 

3.2.2 Leveraging Serverless Computing 

In this section, we discuss the serverless architecture used to efficiently run the computer vision models that are crucial to 

our platform. Leveraging serverless computing allows us to seamlessly scale the processing of these models, enabling 

faster and more accurate results for our users. Below, we briefly describe the fundamentals of Serverless Computing and 

then we delve into the specific benefits and implementation details of our serverless approach. Serverless computing, also 
known as Function as a Service (FaaS), is a cloud computing model that allows developers to focus solely on coding and 

deploying their applications without the need to manage underlying servers or infrastructure35,36. The cloud provider 

handles server management, capacity planning, and scaling, making it more efficient and cost-effective for 

developers37,38,39,40,41. Popular commercial FaaS platforms include AWS Lambda, Google Cloud Functions, and Microsoft 

Azure Functions, while open-source alternatives include Apache OpenWhisk, OpenLambda, and Knative. Serverless 

computing is well-suited for deploying and executing scientific workloads, as it allows for optimal resource provisioning 

and function chaining42,43. We opted for AWS Lambda, as it enables code execution without managing infrastructure 

components while defining events that activate the functions44. AWS Lambda executes each function within a dedicated 

container, which is then executed on a multi-tenant cluster of machines managed by AWS. The total runtime of a function 

in AWS Lambda includes the execution of the code itself and the initialization performed by Lambda45. The code is 

executed within a container deployed for this purpose, which will be reused if the function is triggered again within the 
next 15 minutes, reducing the initialization time46. EYE-Sense utilizes AWS Lambda and serverless architecture to develop 

an object detection system capable of inferring the trained Computer-Vision models. For instance, our YOLOv5 models 

are implemented through Lambda functions, enabling parallel execution and optimal resource utilization. To handle large 

files exceeding 1GB in size, we employed AWS Elastic File System (EFS) and integrated it with the API Gateway. The 

API Gateway serves as an intermediary for securely accessing the EFS files, ensuring optimal performance and scalability 

while maintaining a high level of security. Our implementation also considers the "cold start" time, which occurs when a 

new instance of the Lambda function is initiated, and the EFS file system needs to be mounted. We carefully analyzed the 

cold start time to ensure efficient execution of the Lambda function. Our object detection system utilizes an Amazon S3 

bucket as the input for processing images, with the API Gateway managing requests and triggering the YOLOv5 Lambda 

function. The YOLOv5 Lambda function then processes images, performs object detection, and deposits the resulting 

output in a designated S3 bucket, ensuring seamless and efficient operations of our Platform. Using the EFS-Lambda 

model provides several advantages over local computing, including efficient parallelism, scalability, automatic scaling, 
and a pay-as-you-go pricing model, which significantly reduces operational costs and simplifies infrastructure 

management.  One approach we employ to minimize the costs associated with object detection tasks is to avoid the use of 

Amazon S3 or Elastic File System (EFS) storage when possible. Specifically, in cases where the available 512 MB of 

temporary storage provided by Lambda instances is sufficient for the task at hand, we opt not to use S3 or EFS storage. 

The motivation behind this approach is to reduce costs, as we will argue in the remainder. 

We compared the actual cost of using AWS Lambda functions with or without S3 and EFS storage versus using Amazon 

EC2 with S3 storage. Amazon EC2 are virtual computing environments that allow users to rent virtual servers, also known 

as instances, to run their applications. We tested these three deployment configurations for a simple scenario. We inferred 

a YOLOv5 model on 1000 images with an average size of 50 MB each. For the AWS Lambda functions scenarios we 

allocated 300 MB of memory and we had a duration of 40 seconds per image inference and for the EC2 scenario we have 

a t3.medium instance with 2 vCPUs and 4 GB RAM.We considered the following factors for cost estimation:  
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1. Storage: We stored the 1,000 images for processing. Storing Prices were calculated according to Amazon S3 Pricing.47 

($0.023/GB) 

2. Processing: We estimated the cost of processing the images using AWS Lambda functions and an EC2 instance with 

the same processing time. Prices were calculated according to Amazon EC2 On-Demand Pricing48 and AWS Lambda 

Pricing49, which are $0.0416/hour for EC2 t3.medium and $0.20 per 1M requests, $0.0000166667 for every GB-second 

for AWS lambdas. 

Table 3. Actual cost estimates for each scenario (data transfer were considered negligible for all the scenarios). 

Scenario Storage Cost Processing Cost Total Cost 

Lambda with S3 and EFS Storage $1.15 (50GB)  $0.1956 $1.3456 

EC2 Instance with S3 Storage $1.15 (50GB) $0.394 (9.44 hours)  $1.544 

Lambda without S3 Storage Negligible $0.1956 $0.1956 

 

 

Based on the data presented in Table 3, it is evident that processing 1,000 images using AWS Lambda functions without 

S3 storage incurs a cost of approximately $0.20, which is significantly lower than the cost of using Amazon S3 for storage 

and Amazon EC2 instances, which is approximately $1.54. The implementation of AWS Lambda functions can provide 

cost savings from 12.5% when we use S3 storage up to 85% percent when we do not use S3 storage in our Lambdas. At 

the same time, they offer the benefits of parallel processing, resulting in higher scalability and throughput when compared 

to the use of Amazon EC2 instances. While our testing and implementation were focused on the YOLOv5 model, similar 

performance boost and cost-effectiveness is to be expected when inferring our other models using AWS Lambda with or 

without temporary storage and parallel processing. By leveraging the benefits of AWS Lambda, EYE-Sense can efficiently 
parallelize the processing of image datasets, resulting in improved scalability and faster processing times. Additionally, by 

using temporary storage within the Lambda function, we eliminate the need for additional storage costs, further reducing 

the overall cost of image inference. 

3.3 User Interface 

EYE-Sense's user interface (UI) is designed to offer an intuitive and seamless experience for users. In this section, we 

discuss the layout and features of our UI, which can be accessed through a web browser. Starting with an overview of the 

Landing Page (Figure 4), it presents a comprehensive summary of the platform's capabilities. Upon logging in, users 

encounter a navigation menu that facilitates easy access to each of our workflows, allowing for smooth transitions between 

services. Besides the navigation menu, the landing page showcases an example of the platform's usage through interactive 

plots generated from data provided by the platform. The plots illustrate a scenario executed for the city of Heraklion 

(Greece) area, visualizing results for ship detection analysis, atmospheric quality analysis, water quality analysis, and 

nightlight activity analysis. These interactive plots enable users to explore and evaluate data in a user-friendly and intuitive 
manner, demonstrating the potential of our platform. Overall, the landing page serves as a direct introduction to our 

platform, highlighting the scope and versatility of its capabilities and allowing users to effortlessly engage in the 

exploration. 
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Figure 4. Landing Page – UI. 

 

3.3.1 Ship detection workflow – UI 

Our platform offers a highly effective workflow for identifying ships in synthetic aperture radar (SAR) images using a 

YOLOv5 object detection model. Users provide their SentinelAPI credentials and choose a time-frame of interest, upon 

which our system searches for available Sentinel-1 tiles within the specified timeframe (as illustrated in Figure 5, left). The 

user can then select their preferred preprocessing steps and initiate the ship detection algorithm (Figure 5, right). Upon 

completion of the detection algorithm, users receive an email containing a .zip file with the processed images, each 
displaying bounding boxes that indicate detected ships, as well as multiple coco.txt files containing the results in COCO 

format. Figure 6 displays the  [zoomed-in] result of ship detection on an image. Our user-friendly interface streamlines the 

entire process, enabling users to effortlessly search for SAR images, customize detection parameters, and obtain 

comprehensive output files with minimal effort. 

 

Figure 5. Ship detection workflow UI – area selection. 
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Figure 6. Ship detection workflow UI – detection results. 

 

3.3.2  VHR object detection - UI 

A potent workflow is available for detecting a broad spectrum of objects within satellite images with very high resolution 

(VHR). Images can be uploaded by the user and the targets of interest, namely aircrafts, ships, containers, or umbrellas, 

can be selected, as shown in Figure 7. Once the object detection algorithm has completed, the user is provided with the 

results both as an image with bounding boxes indicating the detected object(s) and as a .txt file in COCO format, allowing 

for easy integration with other software or analysis tools. An example of the output images of our object detection models 
can be seen in Figure 8. The interface simplifies customization of detection parameters, uploading and processing of large 

data volumes, and generation of detailed output files with minimal effort. 

e  

Figure 7. VHR object detection workflow UI. 
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Figure 8. Object detection annotated results for aircrafts, ships and containers. 

3.3.3 Atmospheric quality analysis – UI 

EYE-Sense provides an efficient and user-friendly workflow for accessing and analyzing atmospheric indicators from 
Sentinel-5P data using Google Earth Engine. The user simply specifies the area of interest, the time interval for analysis, 

and the desired atmospheric indicators (Figure 9, top left). After retrieving and processing the pertinent data from the Earth 

Engine database, EYE-Sense offers users the choice to view the visualized results on an interactive map (Figure 9, top 

right) or extract raw data in .csv format. For those who prefer visualizing the data, we also offer an interactive plot graph 

in our UI (Figure 9, bottom). The user-friendly interface provided by our platform simplifies the process of exploring and 

analyzing atmospheric indicator data, allowing users to customize analysis parameters and generate detailed output files 

with ease. 

 

Figure 9. Atmospheric quality analysis - UI. 
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4. USE CASE 

 
In this section, we will focus on a specific use-case scenario as a representative example of the platform’s functionalities 

and workflow. In this scenario, a policy-maker responsible for overseeing tourism in a particular area lacks the technical 

know-how and resources necessary to extract valuable insights from the massive amount of satellite data. EYE-Sense can 

assist the user by converting satellite data into more straightforward insights. The overall workflow of the platform (Figure 

10) involves three steps. Initially, the user chooses a service (EO parameter) from the list presented in Figure 1. Afterwards, 
they choose a particular area of interest and lastly, they define a time frame that pertains to the scenario they want to 

explore.  

 

Figure 10. EYE web-platform workflow. 

To illustrate, EYE-Sense will be utilized in the municipality of Heraklion, Greece, known for its thriving tourist industry. 

The aim is to offer insights into touristic activities using three EO parameters: nighttime lights (NTL), atmospheric and 

oceanic quality. Our objective is to establish a correlation between ground aviation-transportation data obtained from the 

airport of Heraklion and the previously mentioned EO parameters. In Figure 11 (top), the normalized aviation data is 

presented in the form of time series, showcasing the monthly arrival statistics of international passengers (green line) 
arriving to Heraklion's airport from 01/2017 to 12/2021. Our next step was to define an Area Of Interest (AOI) for which 

we will obtain EO parameters for the same time period as the aviation data. We opted to concentrate on the Heraklion 

coastal zone as the AOI, depicted in Figure 11 (bottom), as it is a prominent touristic area. For that area, we obtained the 

normalized NTL radiance time series and plotted it against the aviation data, as shown in Figure 11 (top). 

 

 

Figure 11. Top: normalized time series of Aviation data (green line) and NTL radiance (blue line) obtained from 2017 to 

2022. Bottom: Heraklion municipality. The grey polygon highlights the Area of interest. 
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In order to assess the degree of association between the two time series we use statistical techniques such as the Pearson, 

Kendall and Spearman correlation coefficients, which indicate the strength and direction of the linear relationship between 

the two time series.  The correlation coefficients between Aviation data and A. Nighttime-lights B. Atmospheric and V. 

Oceanic data are presented in Table 5. The first three rows present the Pearson, Kendall, and Spearman correlation 

coefficients for the normalized time-series. The next three rows present only the Pearson coefficient – however, this time, 

to alleviate the noise and smooth the time-series, we first transformed each time series in the following 3 ways:  

1. Applied a rolling average with a window of 3 (months). 

2. Decomposed each time series into its trend components. 

3. Used the differencing method to transform them into stationary time series. 

Subsequently, we estimated the correlation coefficient between each resulting time series and present our findings in Table 

4. The correlation values of 0.92 (Pearson) , 0.71 (Kendall) and 0.87 (Spearman) indicate a high degree of correlation 

between Aviation and night time radiance.  

Table 4. Correlation metrics between Aviation data and 1. NTL 2. Maritime 3. Atmospheric and 4. Oceanic data. 

Correlation 

coefficient 

Time series 

transformation 

method 

Time series  

Nightime 

lights  

Atmospheric data Oceanic data 

HCHO O3 CO NO2 CDEOM_p50 Turbidity p50 Chl p50 

Pearson Normalized 0.92 0.77 -0.47 -0.28 0.72 0.5 0.57 0.47 

Kendall Normalized 0.71 0.56 -0.29 -0.32 0.45 0.34 0.37 0.25 

Spearman Normalized 0.87 0.73 -0.48 -0.45 0.63 0.47 0.51 0.37 

Pearson Rolling averages  0.95 0.86 -0.51 -0.39 0.73 0.64 0.64 0.51 

Pearson Trend component 0.95 0.87 -0.47 -0.28 0.74 0.6 0.66 0.54 

Pearson Stationary 0.82 0.89 -0.59 -0.46 0.74 0.62 0.68 0.52 

 

By applying linear regression analysis, we can examine the relationship between the dependent variable (aviation) and the 

rest of independent variables (NTL, atmospheric and oceanic data). Using Ordinary Least-Squares (OLS) regression we 

obtain the results listed in Table 5, illustrating the importance of each feature in predicting Aviation data. In this case, the 

NTL had a significant positive coefficient, indicating it can be used as a predictor for aviation data. Other factors, such as 

atmospheric pollutants (HCHO, O3, CO, NO2) and oceanic pollution (CDOM_p50, Turbidity p50, Chl p50), had limited 

or marginal significance, meaning the impact of touristic activity on them. 

Table 5: Feature importance for the prediction of aviation data. 

 Coef Std err t P>|t| [0.025 0.975] 

Const -0.136 0.088 -1.561 0.136 0.321 0.047 

NTL              0.610 0.179 3.414 0.003 0.235 0.986 

HCHO_median 0.131 0.147 0.891 0.385 -0.178 0.440 

O3_median 0.137 0.124 1.108 0.282 -0.123 0.398 

CO_median 0.007 0.137 0.051 0.960 -0.281 0.296 

NO2_median 0.227 0.171 1.332 0.199 -0.132 0.587 

CDOM_p50 -1.011 0.555 -1.823 0.085 -2.177 0.154 

Turbidity_p50 1.425 0.756 1.884 0.076 -0.164 3.014 

Proc. of SPIE Vol. 12786  127860D-14



 

 
 

 

Chl_p50 -0.720 0.376 -1.918 0.071 -1.510 0.069 

 

In simpler terms, this analysis helps a user understand how touristic activity is associated with NTL and can possibly 

influence atmospheric and water quality in the Heraklion municipality. The analysis shows that nighttime light radiance, 

can be an indicator of tourism activity while other EO parameters like atmospheric and oceanic pollution play a less clear 

role. This information can help local authorities and businesses make informed decisions about tourism development and 

environmental policies without having to wait for ground data. This section showcases the procedures and resultant outputs 
that can be generated via EYE-Sense when the user provides the following inputs 1. Ground data 2. AOI and 3. Time 

period.   

5. CONCLUSION 

 
EYE-Sense web-platform presents a novel, important, and user-friendly solution for acquiring and analyzing satellite data 

from various sources without requiring any coding expertise. Its versatility is demonstrated in its diverse range of supported 

workflows, which can be used in multiple domains such as ship and object detection, nightlight activity, atmospheric data, 

and water quality data. Platform's implementation, based on a microservices architecture and a responsive UI developed, 

highlights its adaptability, scalability, and ease of use. The platform's innovative approach to managing intricate tasks with 

high performance is further emphasized by utilizing serverless computing (for the computer vision component). The 

practical significance and impact of the EYE-Sense platform are demonstrated by its application to the Heraklion 

municipality use-case. By correlating satellite data with economic activity and environmental factors, the platform enables 

users to gain valuable insights into regional tourism and its effects on the environment. Such information is crucial for 
local authorities, businesses, and stakeholders in making informed decisions regarding tourism development and 

environmental policies. EYE-Sense's code-less approach to satellite data acquisition and analysis lowers the barrier of 

entry for users with diverse backgrounds and expertise, opening up opportunities for a wider audience to leverage the 

power of satellite data. The platform's novelty, importance, and ease of use make it a significant contribution to the field 

and an asset for researchers, policymakers, and businesses alike. 
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