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throughput and CDU 
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ABSTRACT 
EUV source power and resist photospeed will dictate the throughput of EUV lithography, and throughput is a key factor 
in the cost of ownership of EUVL as a technology. However, low exposure doses typically lead to poor CD uniformity 
(CDU) and line-width roughness (LWR).  In this paper, we simulate the CDU versus dose-to-size trade-off for a large 
number of virtual photoresists using PROLITH for 28nm, 26nm, and 22nm HP contacts. The resulting CDU versus dose 
curve is very similar to the experimental investigations by Naulleau et al. (Proc. SPIE, v7972, 2011) and by Goethals et 
al. (EUVL Symposium 2012).  With the simulated results, we can investigate trends with physical properties such as 
diffusivity of acid and quencher, and overall exposure yield, as well as formulation properties such as PAG and quencher 
loadings, and conventional versus photodecomposable quencher. 

Introduction 
Historically, the semiconductor industry has maintained Moore’s law by using a either an increase in numerical aperture 
(NA) or a reduction in wavelength (λ).  The next planned technology change is from ArF to EUV.  The dramatic 
reduction in wavelength combined with a reduction in NA has obvious advantages for resolution and depth of focus, but 
the reduction in wavelength by a factor of roughly 14 also reduces the number of photons by the same factor for an 
equivalent exposure dose.  This means that photon shot noise will be a much larger problem for EUV compared with 
ArF.  A typical result is shown in Figure 1, which shows LER versus dose-to-size for a large number of sample 
photoresists exposed on the SEMATECH Berkeley MET [1].  As shown in the figure, the LER generally decreases as 
the exposure dose is increased due to improved shot noise statistics. Cost of ownership of EUV tools will very much 
depend on the trend shown in this figure because current EUV sources have very limited power – lower power means 
either a lower scan rate, which allows a large exposure dose but is detrimental to throughput, or a lower exposure dose, 
which improves throughput but leads to poor CDU and LWR due to photon shot noise. 

Photoresist vendors are working directly on this problem, as they try to determine the right compromise between 
resolution, LWR, and sensitivity.  It is interesting to note that the data shown in Figure 1 represent samples exposed over 
a 5 year period, and there is a substantial spread in the LER response for any particular exposure dose (sensitivity).  
Many of these samples are from commercial photoresist vendors, so the details of the resist formulation are not open to 
the general scientific community.  This makes it unclear what formulation improvements might move a sample from a 
relatively large LER to a smaller LER response for approximately the same exposure dose.  Several resist formulation 
changes have been discussed in the literature, such as using a polymer-bound PAG to reduce acid diffusion during post 
exposure bake (PEB) [2,3,4,5], photodecomposable quencher[6,7,8], high PAG loading [9], and improving acid yield 
during the exposure process [5, 11,12].   

Even for the published studies where the formulation changes are fully disclosed, it can be difficult to decouple different 
physical phenomena as the formulation is modified.  For example, in the study by Higgins [9,13], increasing the PAG 
loading led to a systematic decrease in the dose-to-size, a systematic degradation in the exposure latitude, and a mixed 
response in LWR.  These lithographic responses were attributed to an increase in acid yield during exposure and an 
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state, PAG*.  For the trapping mechanism [9, 19], a low energy electron passes sufficiently close to a PAG, it may be 
captured by the PAG, and this puts the PAG into an excited state, PAG*.  For both mechanisms, the excited state PAG* 
may either relax to the ground state or convert to an acid product.  The key difference for these two mechanisms is that 
the electron is consumed in the trapping pathway, whereas the electron continues through the resist matrix for the 
excitation path.  The acid yield per photon is typically higher for the excitation mechanism because the electron is not 
consumed when interacting with a PAG. 

While most of the discussion in this section has been related to conversion of PAG into acid, all of the same mechanisms 
can be applied to the quencher molecules when simulating photodecomposable quencher, also known as 
photodecomposable base (PDB).  PDBs are typically photosensitive quenchers that can decompose upon exposure into 
inert materials that can no longer titrate (or neutralize) acid within the photoresist [6].  For EUV, these compounds are 
likely to be both photosensitive and sensitive to the electron exposure mechanisms described above for PAGs. 

While the models for photon shot noise, concentration fluctuations, and electron scattering are fairly well-understood and 
in broad use within the scientific community, using these models in a photolithography simulator introduces several new 
model parameters and increases the overall complexity of the photoresist model.  It will be useful to have a simplified 
model for CDU that we can use to better understand the results and trends that we find with the model described above.  
Perhaps the simplest model for CDU is 

 
dE

dCDCDU Eσ=  (4) 

Where σE is the noise in the dose, which multiplies the dose sensitivity.  (Many authors have proposed models similar to 
this.)  For our exposure model, we propose splitting the dose noise into at least three terms: a photon shot noise term, a 
PAG concentration fluctuation term, and a quencher fluctuation term, as in reference [15] 
 

 ...3212 +++=
quencherPAGphotons

E n
c

n
c

n
c

σ  (5) 

We have assumed Poisson statistics for each source of noise, and that each term is uncorrelated, for simplicity.  The 
coefficients c1, c2, c3, are (undetermined) arbitrary constants.  The more important point is that the result of the exposure 
process is a population of acids, and the distribution of these acids should depend on photon shot noise, fluctuations in 
the PAG concentration, and fluctuations in quencher concentration due to possible neutralization of the acid by a nearby 
quencher.  For a more detailed treatment of the statistics of acid formation during the exposure process please see 
Chapter 6 of reference [15].  The simplified model given by equations (4) and (5) should be sufficient for analysis of the 
results presented here. 

Simulation Protocol 
We simulated three separate test structures, 28nm HP, 26nm HP, and 22nm HP contacts with 50nm thick resist films on 
bare silicon.  The scanner and mask conditions for each of these test structures is listed below in Table 1 – these settings 
correspond to an optimized Quasar combined with a mask bias that maximizes the NILS for the target hole diameter.  
The lens was assumed to be perfect, with no aberrations and no flare.  The mask was simulated using a thick mask 
model, in order to account for the large absorber stack thickness compared with the EUV wavelength.   
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Analysis of the Results 
Among the parameters examined in this study, the acid diffusivity had the largest impact on the CDU.  This is due to the 
large impact of the acid diffusion length on the dose sensitivity, as shown for an example virtual photoresist in Figure 5.  
Based on the simplified CDU model, given by equation (4), we would expect the CDU to decrease as the dose sensitivity 
decreases.  If we analyze the entire 28nm HP dataset, then we shall see that for a given dose, most of the samples 
clustered at the low range of CDU have low acid diffusivity (see Figure 6).  The impact of most of the other parameters 
was to determine the dose-to-size for a particular virtual photoresist sample. 

We also analyzed the results for differences between virtual photoresists with PDB and samples with conventional 
quencher.  The results are shown in Figure 7.  It is interesting to note that the population of photoresists with PDB 
appears to have lower CDU and lower dose-to-size in general, but there appears to be a hard lower bound, or “envelope,” 
in the CDU versus dose-to-size curve that neither set of samples can cross.  (The general shape of this envelope is what 
might be expected by photon-limited shot noise.)  In addition, there are samples with PDB and with conventional 
quencher that are on this limiting envelope. We found this result to be surprising, because PDB has been reported to 
improve CDU experimentally for ArF resists [8], and we have seen simulation results that demonstrate better LWR with 
inclusion of PDB for EUV resist [20].   

 

Figure 5: Dose sensitivity versus acid diffusion length for 28nm HP contacts. The optical limit is calculated from the 
slope of the image in resist at the target edge of the hole. 
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We checked the amplitude of the “dose noise” in the simplified CDU model given by equation (4) by performing open-
frame exposures near the dose to clear for the two resists.  Considering that the dose noise after the exposure process 
should include both acid and quencher concentrations, we collected statistics on the amount of “excess acid” after 
exposure, where excess acid is defined as the number of acids remaining if every remaining quencher neutralized an acid 
(i.e., it is the number of acids minus the number of quenchers).  Histograms for the excess acid are shown in Figure 9, 
and we find that the standard deviation of the PDB excess acid is 20% narrower than the conventional case, which is 
quite close to the reduction observed in CDU for 45nm holes.   

From this result, we propose the following mechanism for the reduction of CDU for ArF exposures.  First, the dominant 
contribution to the dose noise is fluctuations in the PAG and quencher concentrations [15].  This is supported in the 
simulation results by the lack of a strong lower bound envelope in Figure 8.  For concentration fluctuations, we imagine 
scenarios such as the cartoons shown in Figure 10.  If a photon is absorbed and the local PDB concentration is high, the 
probability that the photon is absorbed by the one of the PDB molecules is also increased.  This provides a mechanism to 
smooth out concentration fluctuations in quencher, and the local photospeed of the resist is more uniform. 

 

 

Figure 9: Histograms for excess acid after open frame exposure at the dose to clear for the ArF virtual resist samples 
containing PDB and containing conventional quencher.  The standard deviation of the photodecomposable quencher is 
19% smaller than the width of the conventional quencher. 
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Figure 10: Cartoon representation of PAG and quencher fluctuations in a small volume of resist. 

Summary and Conclusion 
We have generated and evaluated a large number of EUV and ArF photoresists for contact hole applications.  For EUV, 
we observed a lower bounding envelope that has a shape typical of photon-limited shot noise.  This lower bound is most 
obvious in the results for 28nm HP, where we evaluated the largest number of samples over a wide dose range.  
Reducing acid diffusion during PEB has the largest impact on how close a particular sample approaches this lower 
bound, and other parameters, such as acid yield, quencher loading, and inclusion of PDB, appear to mostly modify the 
dose to size for the virtual resist.  For ArF, we did not observe a clear lower bounding envelope in the CDU versus dose 
curve, which implies that other sources of noise dominate CDU for ArF resists, such as fluctuations in the local 
concentration of PAG and quencher.  This is the same conclusion reached by Mack in his statistical analysis of the 
exposure process [15].  Inclusion of PDB significantly improves the CDU for the ArF case, and we have proposed a 
mechanism for PDB reducing the concentration fluctuations in the quencher concentration. 
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