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1 Introduction
Conventional photolithography systems use physical masks,
which are difficult to create and nearly impossible to modify.
Maskless direct write lithography systems are an interesting
alternative which bypass physical masks.1 As illustrated in
Fig. 1, they instead utilize an array of lithography writers to
directly write a mask image on a photoresist coated wafer.
There are a number of advantages to maskless lithography
systems: First, the flexibility gained by replacing physical
masks with electronic images makes maskless lithography
systems attractive when rapid prototyping is needed for the
chip design process. Second, by removing the mask-making
process, the initial cost of chip fabrication is significantly
reduced.1 Third, maskless lithography systems have the po-
tential to be improved by software because the mask images
are electronically controlled. This last point will be the focus
of this paper.

However, maskless lithography systems have a drawback
over physical mask lithography systems: they are slow.2

This issue can be resolved by massively-parallel lithogra-
phy writers. In Ref. 3, a maskless lithography system using
a bank of 80,000 lithography writers operating in parallel at
24 MHz is illustrated. As suggested by Dai and Zakhor,2 this
lithography system can match the conventional photolithog-
raphy system throughput, one wafer layer per 1 min, but it
raises a question on how to provide the massive layout image
data (which is typically several hundred terabits per wafer)
to the lithography writer. Because of a bandwidth shortage
between the storage where the layer images are deposited
and the maskless lithography system, obtaining competitive
throughput using a maskless lithography system is not pos-
sible with conventional data delivery methods.

Dai and Zakhor2, 4 addressed this problem by designing
a data delivery system with a lossless image compression
component. As shown in Fig. 2, they cache compressed lay-
out images in storage disks and send this compressed data to
the processor board memory. Then the maskless lithography
system can have higher throughput if the decoder embedded
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within the maskless lithography writer can quickly recover
the original images from the compressed files.

This type of system has two requirements:3 1. the com-
pression ratio should be at least (transfer rate of decoder to
writer/transfer rate of memory to decoder), and 2. the decoder
circuit has to be simple enough to be implemented within the
maskless lithography writer as a small add-on. This second
constraint requires the use of a decoder operating with little
memory.

Dai and Zakhor2 found that the layout images of control
logic circuits tend to be irregular while the layout images
of memory cells tend to have repeated patterns. C4, the first
lossless layout image compression algorithm proposed by
Dai and Zakhor, applies context prediction and finding re-
peated regions within an image in an attempt to handle the
varying characteristics of layout images. Dai and Zakhor
later introduced Block C4,4 which significantly reduces the
encoding complexity.

Our work is based on the framework of Dai and Zakhor.2

In this paper, we introduce a compression algorithm which
has a better compression performance and a faster encod-
ing/decoding process than C4 and Block C4. Because our
work provides better compression performance, it can be
used to solve the data delivery problem of maskless lithog-
raphy systems with smaller features. Moreover, since our
decoding speed is faster than C4 and Block C4, we can ob-
tain higher throughput.

2 Compression Algorithm
2.1 Overview
Circuit layouts are typically stored in GDSII (Ref. 5) or OA-
SIS (Ref. 6) formats. GDSII and OASIS represent circuit
features such as polygons and lines, and describe them by
their corner points.5, 7 GDSII and OASIS formatted data are
far more compact than the uncompressed image of a cir-
cuit layer. Therefore it may initially appear that the GDSII
and OASIS formats are good candidates for this particular
application. However, this is not the case because maskless
writers operate directly on pixel bit streams and GDSII and
OASIS layout representations must be converted into layout
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Fig. 1 Maskless lithography.

images before the lithography process begins. In general, this
conversion requires 1. eliminating hierarchical structures by
replacing all of the copied parts with actual features, 2. ar-
ranging the circuit features such as polygons and lines into
the corresponding layers of the circuit, and 3. rasterizing
(see Fig. 3). As the conversion usually takes hours using a
complex computer system with large memory, it cannot be
performed within the decoder chip.

Our compression algorithm is inspired by the compactness
of the GDSII/OASIS format and is designed to take advan-
tage of ideas such as corner representation and the copying
of repeated structures. However, we avoid the complex flat-
tening and rasterizing processes and offer a simple decoding
process. We assume throughout that all of the circuit layer
images are binary images.

Optical proximity correction (OPC), which is widely used
for conventional lithography systems to adjust the shapes
of mask features, is not in general necessary for maskless
lithography when the application is the direct fabrication
of real circuits. OPC is conventionally used to compensate
for the image errors due to the diffraction effect,8 which is
not an issue for maskless lithography using electron beams.
The only exception is when maskless lithography is used
to make precise masks for the fabrication of circuits via
photolithography. Since mask making is not a high volume
application, we are more interested in the direct fabrication
of real circuits, which is the only problem we consider. In
this setting we need not worry about OPC.

We instead consider electron beam proximity correction
for maskless lithography systems to obtain good quality
line edge roughness. This is achieved by applying a mul-
tilevel electron beam dosage to each pixel.9 As shown in
Figs. 4(a) and 4(b), uniform electron beam doses result in
blurry boundary edges because of the electron beam prox-
imity effect. To compensate for that phenomenon, a higher
electron beam dosage was applied to the boundary pixels as
in Fig. 4(c) and the proximity effect has been corrected as in
Fig. 4(d).

It is possible to represent the proximity corrected layout
image using gray images.9 However, this data eventually has
to be reinterpreted as a binary image because the lithogra-
phy writer does not produce a multilevel electron beam dose

Decoder Chip 
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Processor 
Board 

Memory 
Decoder Lithography 

Writer 

Fig. 2 Data delivery for a maskless lithography system.

during a single write time. Instead, the lithography writer uti-
lizes an electron beam writer to write the corresponding pixel
multiple times so that the pixel is exposed with the targeted
electron beam dosage; i.e., each electron beam writer uses a
proximity-corrected layout image to write a portion of a gray
image pixel which corresponds to a block of binary pixels.
Our paper considers the “idealized pixel printing model” as
in Ref. 3; however, it can be applied to general proximity
correction methods by reinterpreting the proximity corrected
gray image as a binary image.

Under the idealized pixel printing model, we generated
the gray images by the following process as in Ref. 3. First,
we start with the GDSII or OASIS layout. Second, as illus-
trated in Fig. 3, we rasterize the layout image in a 1 nm grid
and output a large binary image. Third, this binary image
is segmented in blocks and quantized with the appropriate
gray level. For example, if we are targeting a 45 nm process
technology, the electron beam pixel size chosen would be
22 nm (half the minimum feature size) and a block of 22
× 22 binary pixels would make up a single gray pixel. To
obtain a 1 nm edge placement Dai3 suggested counting the
number of fills in every 22 × 22 pixel block and quantizing
that number to one among 32 levels.

The generated gray image is then reinterpreted as a binary
image so that it directly maps to the lithography writer control
signal, by changing the grid size. For the previous example,
we want a 22 nm pixel to have a 1-nm edge replacement. That
means, we need at least 22 dose levels.∗ Therefore, instead
of 32 levels we can choose a quantization of 25 (=5×5)
levels. Since every electron beam dose will increase a single
level, each 22 nm pixel is written 25 times or, equivalently,
that each control signal covers a 4.4 nm (=22/5) pixel size.
For simplicity, we can recompute the numbers so that each
control signal covers a 4 nm (=22/5.5) pixel size and is one
among 30 levels (≈5.5×5.5) for each 22 nm pixel. Finally,
this new binary representation can be obtained by rasterizing
the layout GDSII or OASIS file to the targeted grid (4 nm for
example).

A simple illustration of this binary image to gray image
and gray image to binary conversion is shown in Fig. 5.
Here the grid size of the gray image is set to 4 nm and
the grid size of the binary image is set to 2 nm. Fig. 5(a)
shows the binary rasterized image at a grid size of 1 nm. By
grouping 4×4 blocks of this image as a pixel and quan-
tizing the number of fills to 4 levels (2 bits), we obtain
Fig. 5(b), which corresponds to the gray image at a grid size of
4 nm. Because each gray image pixel has 4 levels, we could
interpret this as a 4 nm pixel written 4 times. Here a 4 nm
gray pixel corresponds to a 2×2 block of binary pixels from
a 2 nm binary grid as in Fig. 5(c). Observe that Fig. 5(c) is
not generated from Fig. 5(b) but could be generated from
Fig. 5(a) by forming the appropriate 2×2 blocks.

Finally, an overview of the compression algorithm is
shown in Fig. 6.10 We begin by seeking frequently occur-
ring patterns. This part roughly matches the patterns that
are frequent to improve the compression performance with-
out increasing the encoding complexity. We next transform
the remaining image into corner images. We then apply run
length encoding (RLE)11 and end-of-block (EOB) coding

∗Note that 32-level was chosen for the previous example so that each pixel
can be represented with 5 bits, but 22-level is the requirement.
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Fig. 3 Preparing layout images from a circuit layout—rasterizing process.

(a) input: uniform dose

(c) input: PC’d dose

(b) output: uniform dose

(d) output: PC’d dose

Fig. 4 Proximity correction using gray tone exposure (Ref. 9).
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Fig. 6 Compression process overview (Ref. 10).

to further compress the transformed image. We finally com-
press the resulting data stream with arithmetic coding.12

In Secs. 2.2 and 2.3, we will first describe how the fre-
quent pattern replacement and corner transform processes
work as separate processes. In Sec. 2.4, we will illustrate
how we should tweak them to work in a unified system,
and in Sec. 2.5 we will describe the final entropy coding
process.

2.2 Frequent Pattern Replacement
GDSII/OASIS formats are designed to take advantage of the
hierarchical structure presented within circuit layouts. In par-
ticular, if a substructure is repeatedly used in a circuit layout,
GDSII/OASIS identifies it and then refers to it whenever the
substructure occurs. For example, the GDSII/OASIS repre-
sentation for an 8-bit adder, which is implemented using two
4-bit adders, will consist of a definition of a 4-bit adder and
the description of the 8-bit adder in terms of two 4-bit adders
as in Fig. 7.

By searching the GDSII/OASIS file and counting the num-
ber of references for each definition, we obtain a list of fre-
quent patterns in the mask image. We could alternatively
run a complex pattern matching algorithm to detect the fre-
quent patterns, but the outcome would not be significantly
different due to the blockwise design of typical circuits. Our
approach is not efficient for compression purposes if the in-
put GDSII/OASIS file is unstructured, but this issue can be
handled by a preprocessing algorithm proposed by Gu and
Zakhor13 which efficiently restructures input GDSII/OASIS
files.

Figure 8 offers an overview of frequent pattern replace-
ment. The input to the procedure is the GDSII/OASIS file
and the layer number of the layout image. The first step
is to detect all of the substructures that are defined in the
GDSII/OASIS representation. The next step is to count
the number of references of each substructure extracted in
the previous step. We proceed to order the substructures by
the number of their occurrences and select the most frequent
P of them, where P is chosen so that the representation of
the P substructures requires less than PSIZE bytes of memory.
Note that we are not fixing the number P , but PSIZE, the
memory that is required to store the P patterns. Also, note
that because of the decoder memory constraint, PSIZE is very
small, and hence, we can only pick a small number of pat-
terns. Each of the P substructures undergoes the rasterizing
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Fig. 7 8-bit adder using two 4-bit adders: GDSII definition (solid line boxes) and references (shaded boxes).

process.† During the rasterizing process, we increase both
the pattern width and height by 1, so that the pattern has an
empty top row and an empty leftmost column as in Fig. 8.
The reason why we are adding this empty boundary will be
explained in Sec. 2.4. Finally, given the binary layout image
the encoder seeks the P patterns within the image. Whenever
one of the patterns is matched within the search region, the
encoder will replace the top left part of the corresponding
part of the image with a string described below and will re-
place the rest of the filled pixels that have been matched with
“0”s (or empty). Note that since the GDSII/OASIS format
allows rotated/flipped copies of a substructure, the encoder
needs to check all possible rotations/flips during the pattern
matching process, and return an encoding accordingly.

In order to restrict the decoder memory, the inside pattern
(which excludes the surrounding empty row and column) is
encoded using the following symbol string format:

$PPP RR F.

The symbol $ is a flag for a pattern. The choice of this flag
will become clearer in Sec. 2.3. P P P is a length �log2(P)�
binary string representing the pattern number, R R is a two-
bit string representing the rotation of the pattern, and the last
bit F indicates whether the pattern is (horizontally) flipped
or not. If P = 1, then P P P can be omitted. Similarly, if
a pattern was never rotated or flipped, then R R and F are
omitted for more efficient representation.

Suppose the pattern p dimension is w p × h p. Then, in
order to make this encoded stream fit in the top row of the
image, we assume the original image size min(w p, h p) is no
shorter than �log2(P)� + 2 · is (Rotation) + is (Flip)
+ �max[log2(w p − qw p ), log2(h p − qh p )]� where is(x) is
1 if x is permitted and 0 otherwise, and qw p (or qh p ) is
one more than the number of empty rightmost columns

†This rasterization process itself is quite complex, but it is much simpler
than that of the entire circuit because the size of the pattern is extremely
small because of constraints on PSIZE. For example, while it took several
hours to generate a single layer image of a full example circuit, it only took
a few seconds to generate the entire layer images of the frequent patterns.

(or the bottom columns) of the pattern. The final term
�max[log2(w p − qw p ), log2(h p − qh p )]� is added because of
the decoder memory restriction which will be explained in
Sec. 3.2.

In Fig. 8, we illustrate an example where P = 1 and
the rasterized layer image of the frequent substructure
is a 3×3 square. Since the layout image contains two
copies of this pattern without the possibility of a rotation
or a flip, the encoder outputs $ (depicted by one “gray”
pixel) for the pixel corresponding to the top-left corner of
each 3×3 square pattern in the input layout image and
“white” pixels for the remaining 8 pixels. For this pat-
tern, min(w p, h p) = 3 and is greater than �log21� + 2 · 0 + 0
+ �max[log2(3 − 1), log2(3 − 1)]� = 1.

During the generation of binary layout images an image
could be truncated if there is a mismatch between the pixel
grid and the GDSII grid. As a result, a pattern could be trun-
cated when it is realized as a binary image; i.e., a substructure
could be repeated within the GDSII/OASIS domain but the
corresponding pattern may not repeat within the binary image
domain. Despite this issue, the experimental results indicate
that this approach to pattern extraction yields improvements
in compression and encoding time over prior algorithms for
this problem. To understand why this is the case, observe
that the patterns we extract have a limited size and so the
mismatch between the two domains is less likely to occur.

The parts of the layout image that have not been matched
during the frequent pattern replacement process are handled
by the corner transformation step which we will discuss in
Sec. 2.3.

2.3 Corner Transformation
In the GDSII/OASIS representation of a structurally flat-
tened single layer, the layout polygons are represented in
terms of their corner points. While this representation is
efficient for a system in which decoder memory is large,
it is infeasible when the decoder memory is restricted be-
cause the decoder needs to access a memory block of size
(|x1 − x2| + 1)×(|y1 − y2| + 1) for the encoder to connect
an arbitrary pair of points (x1, y1) and (x2, y2) as in Fig. 9.
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However, if the angle of a contour line is constrained
to a small set then there can be considerable simplifica-
tion in the rasterizing process. In our previous research,14

we restricted the contour lines to be either horizontal or
vertical and decomposed an arbitrary polygon into a number
of Manhattan polygons, i.e., polygons with right angle cor-
ners. This decomposition is well-suited to this application
because most components of circuit layouts are produced us-
ing CAD tools which design the circuit in a rectilinear space,
and even the non-Manhattan parts can be easily described by
Manhattan components.

If the contour lines are constrained to be either horizontal
or vertical and the decoder scans the image in raster order,
i.e., each row in order from left to right, then when the de-
coder encounters a corner it only needs to decide whether
it should reconstruct a horizontal and/or a vertical line. The
raster order implies that a corner is either the beginning of
a line going to the right and/or down or the end of a line.
In our previous research,14 we specified this decoding deci-
sion by representing each pixel with five possible symbols —
‘not corner,’ “right,” “right and “down,” “down,” and “stop.”
However, as we will see, this five-symbol representation can
be further simplified.

To motivate the simplified transformation, observe that a
row (or a column) of the original layout image consists of

(x1,y1) 

(x2,y2) 

Fig. 9 Required decoder memory (shaded region) to reconstruct a
line (dashed line) from (x1, y1) to (x2, y2).

alternating runs of 1’s (fill) and runs of 0’s (empty). We en-
code the pixels where there are transitions from 0 to 1 (or
1 to 0) using symbol “1” and encode the other places us-
ing symbol “0.” Since most polygons are Manhattan, after
applying this encoding in the horizontal direction we obtain
alternating runs of 1’s and 0’s in the vertical direction as
seen in Fig. 10(b). Therefore, we can re-apply this encoding
in the other direction to produce the final corner image. We
call this encoding scheme the binary corner transformation
because the final encoded image is binary and the location
of the 1-pixels indicate the corners of the polygons. In order
to illustrate how the transform is applied, we will first dis-
cuss a two-step transformation process and then introduce a
one-step transformation process which requires less memory
during the encoding process and runs faster than the two-step
transformation process.

The two-step transformation process consists of a hor-
izontal encoding step and a vertical encoding step. In the
horizontal encoding step, we process each row from left to
right. For each row, the encoder initializes the previous pixel
value to 0 (not filled). If the value of the current pixel differs
from the previous one we encode it with a 1 and otherwise
with a 0. After the horizontal encoding is completed, we use
the intermediate encoded result as input to the vertical en-
coding process. This is identical to the horizontal encoding

(a) Original Image (b) Horizontal coding of (a) (c) Vertical coding of (b) 

Fig. 10 Two-symbol corner transformation.
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Algorithm 1 Transformation : Two-Step Algorithm

Input: Layer image IN ∈ {0, 1}C·R

Output: Corner image OUT ∈ {0, 1}C·R

Intermediate: Temporary image TEMP ∈ {0, 1}C·R

{Horizontal Encoding}

1: Initialize TEMP(x, y) = 0,∀x, y.

2: for y = 1 to R do

3: for x = 1 to C do

4: if IN(x, y) �= IN(x − 1, y) then

5: TEMP(x, y) = 1.

6: end if

7: end for

8: end for

{Vertical Encoding}

9: Initialize OUT(x, y) = 0,∀x, y.

10: for x = 1 to C do

11: for y = 1 to R do

12: if TEMP(x, y) �= TEMP(x, y − 1) then

13: OUT(x, y) = 1.

14: end if

15: end for

16: end for

process except that instead of processing rows we process
each column from top to bottom.

The algorithm is summarized in Algorithm 1. In the algo-
rithm, x is the column index [1, · · · , C] of the image and y
is the row index of the image [1, · · · , R].

As we can see from Line 13 of the algorithm,
OUT(x, y) = 1 only if TEMP(x, y) �= TEMP(x, y − 1). That
is, OUT(x, y) = 1 only if TEMP(x, y) = 1 and TEMP(x, y
− 1) = 0, or if TEMP(x, y) = 0 and TEMP(x, y − 1) = 1.
Since TEMP(x, y) = 1 only if IN(x − 1, y) �= IN(x, y) as in
Line 5, we can simplify the corner transform process as in
Algorithm 2.

The preceding algorithm bypasses the need for interme-
diate memory. Here pixel (x, y) is processed as a function
of the input pixels (x − 1, y), (x, y − 1) and (x − 1, y − 1).
This simplification results in a much faster running time. Fi-
nally, note that the transformation can handle layout images
with width-1 lines as shown in Fig. 11.

2.4 Frequent Pattern Replacement + Corner
Transformation

In Secs. 2.2 and 2.3, we separated the discussion of fre-
quent pattern replacement and corner transformation. Since
the output of frequent pattern replacement is a ternary im-

Algorithm 2 Transformation : One-Step Algorithm

Input: Layer image IN ∈ {0, 1}C·R

Output: Corner image OUT ∈ {0, 1}C·R

1: Initialize OUT(x, y) = 0, ∀x, y.

2: for y = 1 to R do

3: for x = 1 to C do

4: if IN(x − 1, y − 1) = IN(x, y − 1) and

IN(x − 1, y) �= IN(x, y) then

5: OUT(x, y) = 1

6: end if

7: if IN(x − 1, y − 1) �= IN(x, y − 1) and

IN(x − 1, y) = IN(x, y) then

8: OUT(x, y) = 1

9: end if

10: end for

11: end for

age, a modification is needed to the corner transformation.
Figure 12 illustrates the tweaking of the frequent pattern
replacement and the corner transformation processes when
P = 1. The frequent pattern replacement process now out-
puts two images, namely the matched pattern image and the
residue image produced by removing the matched patterns
from the original layout image. In this decomposition the
pattern embeddings are compressed by the frequent pattern
replacement and the residue image is compressed by the cor-
ner transformation.

Note that the filled pixels in our “corner” image are more
closely related to transitions than to actual corners in the
original layout image. Therefore, filled pixels in the corner
image can appear to the right, down, or right-down of the
corresponding actual corner in the layout image and can
hence overwrite the frequent pattern stream if the frequent
pattern does not contain an empty top row or an empty left
column. Because we added an empty row and column to the
frequent patterns, we can add the matched pattern image and
the corner image to form the transformed image without any
distortion.

Figure 12 illustrates the combination of the frequent pat-
tern replacement and the corner transformation processes.

(a) Original Image (b) Horizontal coding of (a) (c) Vertical coding of (b) 

Fig. 11 Handling width-1 lines.
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Fig. 12 Handling frequent pattern replacement and corner transformation in a unified system.

The frequent pattern replacement process now outputs two
images, the matched pattern image and the residue image
produced by removing the matched patterns from the origi-
nal layout image. In this decomposition, the pattern embed-
dings are represented by the frequent pattern replacement
process and the residue image is represented by the cor-
ner transformation. The outputs of the two processes are
summed to obtain the transformed image. Observe that two
nonzero symbols are never summed, and so the summation is
well-defined and the transformed image is over the alphabet
{0, 1, $}.

We next describe an entropy coding scheme to compress
the transformed image.

2.5 Entropy Coding
We expect the transformed image to contain long runs of
zeroes, and it is therefore effective to use a type of run length
encoding (RLE)11 for compression. The nonzero pixels of the
transformed image are written as they are, but each run of
zeroes is represented by its run length which we encode with
an M-ary representation. More specifically, we introduce
new symbols “2,” “3,” · · ·, “M + 1” to represent the base-
M symbols “0M ,” “1M ,” · · ·, “(M − 1)M .” For example, if
the transformed stream was “1 00000 00000 1 00000 0000
1 00000 00000 000” and M = 3, then the encoding of the
stream is “1 323 1 322 1 333” because the run length are 10
(= 1013), 9 (= 1003), and 13 (= 1113), and 2/3/4 is used to
represent 03/13/23.

These M symbols are to be encoded using arithmetic
coding12 for further compression. For arithmetic decoding,
we need to allocate memory for each symbol, and hence, in
our restricted decoder memory setting, we want to choose M
as small as possible. However, small M is not desirable since
there are very long runs of zeroes. These long runs of zeroes
occur frequently if the circuit features are aligned in a grid
manner.

Therefore, in order to obtain a high compression ratio
while restricting the size of the decoder memory, we seg-
ment each line into k blocks of length L , and we introduce
a new “EOB (end-of-block)” symbol “X.” If a run of ze-
roes ends after a block, instead of representing the run length
using an M-ary representation, we use the end-of-block sym-
bol X. Hence, we encode a line of zeroes with k X’s instead
of roughly logM (kL) symbols. Continuing the previous ex-
ample, if M = 2, k = 5, and L = 7, then the transformed
stream “1000000 0000100 0000000 1000000 0000000” is
represented as “1X 3221X X 1X X,” where 2/3 (= 02/12) is
used for the binary representations of runs of zeroes.

After applying EOB coding, there tends to be long runs
of “X”s in the encoded stream. Therefore, we can apply run
length encoding to this stream by reusing the M symbols for
the initial runs of zeroes and introducing N new symbols for
an N -ary representation of runs of “X”s . Persisting with the
previous example, if M = N = 2, k = 5, and L = 7, then the
next representation is the string “1 5 3221 45 1 45,” where
2/3 (or 4/5) is used for the binary representation of runs of
zeroes (or “X”s).
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Our last encoding step compresses the preceding stream
with the implementation of arithmetic coding provided by
Witten et al.15 The decoder requires four bytes per alphabet
symbol, and since we used M + N + 3 symbols, 4(M + N
+ 3) bytes were used for arithmetic decoding. Note that M
symbols are used for runs of zeroes, N symbols are used for
runs of “X”s, 0/1 is used for the corner pixel, $ is used to
handle the frequent P patterns.

3 Decoder
The decoder consists of two parts: 1. an entropy decoder
consisting of an arithmetic decoder, run length, and end-of-
block decoder which outputs the transformed image, and 2.
the transform decoder which reconstructs the layout image
from the transformed image. The transform decoder also
reconstructs the frequent patterns using the frequent pattern
table which has been transmitted to the decoder. The ideas
in the implementation of the first part are standard, and we
omit them.

For simplicity we will demonstrate how the layer image
can be reconstructed from the corner image and we will sepa-
rately discuss the recovery of the frequent patterns. However,
these two processes are conducted in a row-by-row fashion
and are executed as a single process because the decoder has
restricted memory.

Since each part of the decoding procedure (arithmetic
decoding, run length decoding, and vertical/horizontal de-
coding) processes each symbol based on the previously pro-
cessed symbols, the entire decoding process can be pipelined
to improve the throughput. Observe also that the decoder can
be implemented in hardware because the decoding process
only requires simple branch and compare operations. For ex-
ample, arithmetic coding and run length decoders are widely
implemented in microcircuits.16

3.1 Corner Transformation
The corner transformation uses pixels from the previous row
and column to decode the current pixel. Because the decod-
ing process depends on the previous row, we designed the
decoder to decode the corner image in a row-by-row manner
instead of in its entirety in order for this process to be com-
patible with the restricted memory available to a maskless
writer. In our transform decoder we use a row buffer (BUFF).
The buffer is used to store the status of the previous (decoded)
row. It uses two symbols, 0 and 1, to represent its status, and
hence, the buffer requires width bits of memory. “0” means
“no transition” while “1” means “transition” which indicates
the starting/ending point of a vertical line. Using the current
row of the corner image and the buffer, we can reconstruct
the layer image as in Algorithm 3. Note that the

⊕
opera-

tion is a binary XOR operation, and is only applied to binary
summands.

Lines 4 to 8 process the buffer. If the buffer is filled, i.e.,
if there is a vertical fill, then the corresponding pixel is filled.
Line 9 initializes the status of the horizontal fill. Lines 10
to 16 process each column of the corner image from left to
right. If the pixel is 1, the decoder makes horizontal/vertical
changes to the image. We first have to update the horizon-
tal fill status (Line 12), fill the output pixel if necessary
(Line 14), and update the buffer if necessary (Line 15). If the
pixel is 0, the decoder makes no horizontal/vertical changes

Algorithm 3 Inverse Transformation

Input: Corner image IN ∈ {0, 1}C·R

Output: Layer image OUT ∈ {0, 1}C·R

Intermediate: Row Buffer BUFF ∈ {0, 1}R

1: Initialize BUFF(x) = 0, ∀x.

2: Initialize OUT(x, y) = 0, ∀x, y.

3: for y = 1 to R do

4: for x = 1 to C do

5: if BUFF(x) = 1 then

6: OUT(x, y) = 1

7: end if

8: end for

9: Fill = 0

10: for x = 1 to C do

11: if IN(x, y) = 1 then

12: Fill = Fill
⊕

1

13: end if

14: OUT(x, y) = OUT(x, y)
⊕

Fill.

15: BUFF(x) = BUFF(x)
⊕

Fill.

16: end for

17: end for

to the image, but fills the output pixels and updates the buffer
according to the fill status. For example, if the decoder was
previously filling the horizontal line, it keeps filling the line
(Line 14) and updates the buffer (Line 15) in order to process
the next row.

3.2 Pattern Reconstruction
If the decoder finds string $, it starts the pattern reconstruction
process. Depending on the number P of patterns, the decoder
reads �log2(P)� pixels to determine which pattern p is used.
If the pattern p is allowed to be rotated, then the decoder next
reads another two pixels to determine its rotation. Similarly,
if the pattern p is allowed to be flipped, then the decoder
reads the next pixel to determine whether p is flipped or not.
Hence, the [$ P P P R R F] stream specifies the pattern to
reconstruct.

In order to perform row-wise decoding of these patterns,
we use a row buffer (BUFF). When the decoder finds the
pattern string [$ P P P R R F], it places that string into
the corresponding buffer location to specify what pattern
should be reconstructed. Furthermore, in order to spec-
ify which row of the pattern p the decoder should next
process the decoder adds a �log2(h p − qh p )� bit binary
representation of the next row number after the pattern
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Table 1 Memory—Corner2 parameters.

File size (bytes)

Decoder memory

Type M N PSIZE (bytes) (kB)

Wire 128 128 0 4.5

Metal 64 64 930 4.9

Active 64 64 550 4.6

Poly 64 64 930 4.9

Via 64 64 800 4.8

string, where qh p is one more than the number of empty
rows on the bottom of the pattern. Observe that if the
bottom r rows of the pattern p are empty, then the de-
coder needs to reconstruct h p − (r + 1) more rows. Recall
that the shorter dimension of the pattern p, min(w p, h p),
may be no less than 2 + �log2(P)� + 2 · is(Rotation)
+ is(Flip) + �max [

log2(w p − qw p ), log2(h p − qh p )
]�.

For example, if we are decoding the compressed image in
Fig. 8, then the 3×3 square instead of the larger 4×4 square
(as in Fig. 8) is stored in the decoder memory. After reading
the $ symbol in the second row, the decoder processes the first
row of the 3×3 square pattern, and fills the corresponding
three pixels of the second row. Then, it updates BUFF to [$0]
starting from the leftmost corner of the pattern so that the
decoder knows it should process the second row of the 3×3
square pattern. (Here we are assuming that P = 1. Since the
only pattern is the same whether it is rotated or flipped, there
is no need to specify the rotation and flip. The last bit 0
indicates that the decoder now has to reconstruct the second
row of the 3×3 square pattern. Since h p = 3 and qh p = 1, we
only need 1 bit for the purpose.) When the decoder processes
the third row, it reconstructs the second row of the 3×3 square
pattern by filling the three pixels, and updates BUFF to [$1]
so that the decoder knows it should process the last row of
the 3×3 square pattern for the next row. A similar procedure

Table 2 Memory—File size (bytes).

File size (bytes)

Type Input Corner2 Corner Block C4 JBIG

Wire 150,314,718 18,561 45,969 1,083,996 17,288

Metal 75,272,468 997,951 2,644,137 2,238,276 1,160,802

Active 74,883,624 81,958 262,158 562,096 135,032

Poly 75,267,742 691,569 1,590,188 1,958,956 725,976

Via 112,943,616 757,741 2,779,929 2,675,916 1,251,210

Total 488,682,168 2,547,780 7,322,381 8,519,240 3,290,308

Table 3 Memory—Compression ratio (x).

Compression ratio (x)

Type Corner2 Corner Block C4 JBIG

Wire 8,098 3,270 139 8,695

Metal 75 28 34 65

Active 914 286 133 555

Poly 109 47 38 104

Via 149 41 42 90

Net Average 192 67 57 149

applies to the third row, and after processing the fourth row,
BUFF is updated to [00] which terminates the reconstruction
of the 3×3 square pattern.

In order to operate this frequent pattern reconstruction
along with the corner transformation, the decoder requires
�log2(3)×width� bits for the row buffer and PSIZE bits to
store the entire pattern table.

4 Experimental Results
We tested the algorithm on two custom circuits — a memory
circuit and a BFSK (binary frequency shift keying) transmit-
ter circuit. The memory core was targeting 500 nm lithog-
raphy technology containing 13 layers of repeated mem-
ory cell structure. The custom designed BFSK transmitter
was targeting 250 nm lithography technology containing
19 layers of mostly irregular features. The data set used
by Dai and Zakhor2 was proprietary and unavailable to
us. For the chips we studied we could run our algorithm
Corner2 and Corner14 on the entire layout image, but we
experienced a memory shortage for the encoding process
when we attempted to run Block C44 on the entire layout
image. We therefore segmented the image into the largest
components for which Block C4 could be applied. We also
considered the standard binary image compression algorithm
JBIG (Ref. 17) for comparison purposes. Note that because

Table 4 Memory—Encoding time (s).

Encoding time (s)

Type Corner2 Corner Block C4 JBIG

Wire 4.23 14.39 1,799.98 7.15

Metal 79.45 12.29 1,849.90 7.72

Active 26.86 12.38 1,813.55 7.24

Poly 52.43 12.47 1,903.93 7.73

Via 45.22 9.56 1,819.31 7.56

Net Average 36.16 12.35 1,830.20 7.43
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Table 5 Memory—Decoding time (s).

Decoding time (s)

Type Corner2 Corner Block C4 JBIG

Wire 2.51 2.18 52.93 2.96

Metal 3.35 2.88 54.24 3.49

Active 3.05 2.23 54.02 3.01

Poly 3.39 2.71 54.53 3.49

Via 3.10 2.62 55.30 3.36

Net Average 2.99 2.48 54.09 3.22

JBIG utilizes 2 to 3 line context-based prediction as well as
a well-tuned arithmetic coding implementation, it requires
to keep at least length 2 · width bits of row buffer to apply
row-by-row decoding. Furthermore, in order to update the
prediction table, JBIG may require up to 214 bytes of de-
coder memory which is larger than the requirements for the
Block C4, Corner, and Corner2 decoding processes.

In our experiment, Corner2 was written in C/C++. Corner
was implemented in C/C++, Block C4 was implemented
in C#, and JBIG was implemented in C/C++ using JBIG-
KIT (Ref. 18) and LibTIFF.19 All of the experiments were
performed on a laptop computer having a 2.53 GHz Intel
Core 2 Duo CPU and 4 GB RAM.

4.1 Memory
For the memory circuit, Corner2 was set with parameters
k = 1 and L = width, and Corner was set with parame-
ters M = 128, k = 2, and L = 8192. We found that given
the nearly even distribution of memory cells among the cir-
cuit layers a choice of k > 1 results in poorer performance
than the choice k = 1 because of the frequency of all-zero
rows in the images. We chose different M , N , and PSIZE
depending on the layer so that the required decoder mem-
ory is similar to that of Corner and Block C4 while giving
us the best compression performance. The parameters are

reported in Table 1 and the decoder memory sizes were 4.9
kBytes for Corner2, Corner, and Block C4, and 20 kBytes for
JBIG.

Table 2 shows the total file sizes in bytes of the algorithms.
The input file sizes are measured for the raw images without
any format (i.e., 1 pixel corresponds to a bit). The circuit
layers are categorized into five types: wire, metal, active,
poly, and via. Table 3 provides the compression ratios for
Table 2. The compression ratios are defined as

Input File Size

Compressed File Size
.

Note that the last row of Table 3 is not the average of preced-
ing rows, but the “net average” which is defined as

Total Input File Size

Total Compressed File Size
.

Because the memory circuit had highly regular wire
layers (horizontal/vertical), we treated these layers
(metal/poly) separately in the discussion. JBIG gave the
highest compression results for the wire layers. However,
the performance of JBIG was marginally better than Corner2
as we can see from Table 2. Observe that the wire layers
consist of polygons over the entire circuit which are long in
the horizontal or vertical direction. These are well-suited to
the 3-line context-based prediction of JBIG and the corner
representation of both Corner2 and Corner. The improve-
ment of Corner2 over Corner is mainly due to the more
efficient RLE methods introduced by Corner2. By contrast,
Block C4 is less efficient because its search regions were
block segmented for faster processing. For these wire layers
our frequent pattern replacement algorithm did not extract
any patterns, and therefore we were able to use larger M
and N values for Corner2 while maintaining similar decoder
memory.

For the other layers, Corner2 outperformed all other al-
gorithms. The compression performance was the lowest for
the metal layers (excluding the wire-grid layers) because
the patterns were more complex and the truncation problem
caused some pattern mismatch within the frequent pattern
replacement process. However, both Corner2 and Corner at-
tain higher compression ratios than Block C4 on average.
The main reason that Corner2 outperforms Corner is be-
cause Corner2 applies additional RLE on EOBs and utilizes
the frequent patterns — in this case, it was the pattern of

Table 6 BFSK—File size (bytes).

File size (bytes)

Type Input Corner2 Corner Block C4 JBIG

Active 359,739,680 520,764 668,261 2,902,716 739,626

Poly 557,831,968 730,321 993,141 4,374,276 915,734

Metal 624,101,432 1,465,018 2,065,167 5,460,276 1,400,706

Via 465,249,560 970,053 1,376,307 5,027,234 1,074,292

Total 2,006,922,640 3,686,156 5,102,876 17,764,502 4,130,358
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the repeated memory cell — while Corner did not. While
JBIG had competing performance, Corner2 outperformed it
about 30%, while requiring only a quarter of the decoder
memory.

Tables 4 and 5 show the average run times of the algo-
rithms for each layer type. As we can see from Table 4, the
encoding time of Corner2 was 51 times faster than that of
Block C4 which reduced the complexity of the earlier algo-
rithm C4 (Ref. 2) by block segmentation. While both Block
C4 and Corner2 utilize the frequent patterns, Corner2 runs
much faster because it analyzes the input GDSII file instead
of the image to choose the set of frequent patterns. This
heuristic has no guarantee of optimality but it improves upon
earlier work. However, Corner2 was about 2.9 times slower
than Corner because the frequent pattern matching process
is nontrivial for the memory circuit; the largest pattern size
was 143×52 (= 930 bytes).

Table 5 shows the average decoding runtimes for each
layer. Because of the frequent pattern replacement, Corner2
had a slightly longer decoding time than Corner but was still
18 times faster than that of Block C4 and 8% faster than that
of JBIG. Similar to Table 3, the last rows of Table 4 and 5
display “net average,” which is defined as

Total Encoding/Decoding Time

Total Number of Layers
.

4.2 BFSK

For the BFSK circuit, Corner2 extracts frequent patterns only
for the via layer which was very small (PSIZE = 5), and the
other parameters were fixed to M = 256, N = 256, k = 4,
L = 8192. The parameters of Corner were set to M = 128,
k = 4, and L = 8192. These choices allowed for similar de-
coder memory sizes for Corner2, Corner, and Block C4. For
these parameter settings and this circuit the decoder mem-
ory sizes for Corner2, Corner, Block C4, and JBIG were,
respectively, 8.4, 8.5, 8.4, and 24 kBytes.

Table 6 shows the total file sizes in bytes of the algorithms.
The circuit layers are categorized into four types: active,
metal, poly, and via. This time, the circuit did not contain
the connection wire grid as in the memory array so the wire
array was omitted. The compression ratios are computed
in Table 7. As we can see from Table 7, Corner2 mostly
outperforms other algorithms. The exception is for the metal

Table 7 BFSK—Compression ratio (x).

Compression ratio (x)

Type Corner2 Corner Block C4 JBIG

Active 691 538 124 486

Poly 764 562 128 609

Metal 426 302 114 446

Via 480 338 93 433

Net Average 544 393 113 486

Table 8 BFSK—Encoding time (s).

Encoding time (s)

Type Corner2 Corner Block C4 JBIG

Active 11.53 13.53 2,636.80 14.58

Poly 17.40 21.05 3,951.47 23.10

Metal 32.70 24.47 4,450.12 28.72

Via 26.40 22.18 6,448.84 25.99

Net Average 17.97 16.78 3,137.88 18.90

layers with JBIG, but the difference was marginal (about 1%)
(see Table 6).

We can also see that the transform-based techniques
Corner2 and Corner both attain higher compression ratios
than Block C4. While Block C4 relies on context prediction
and finding repeating regions within an image, Corner2 and
Corner use actual polygon corners, and these corners can-
not be predicted correctly by Block C4’s context predictor.
Corner2 outperforms Corner mainly because of the improve-
ment in the entropy encoder.

Tables 8 and 9 show the average run times of the algo-
rithms for each layer type. As we can see from Table 8,
the encoding time of Corner2 was 196 times faster than that
of Block C4, but was about 7% slower than Corner. The
improvement over Block C4 is due to the relatively high
computational complexity of the context-based prediction
and region copy components of the C4/Block C4 algorithm,
and the encoding time of Corner2 is slightly longer than that
of Corner because of more complex run-length encoding is
used.

Table 9 shows that the decoding process for Corner2
is 5.7 times faster than Corner which is 5.2 times faster
than Block C4. It was also 1.4 times faster than that of
JBIG. The improvement in decoding time over Corner is
due to the smaller output alphabet for the corner transfor-
mation process. Unlike Corner, which has to decide whether
or not the corresponding pixel is a corner and to identify the
type of each corner, Corner2 only needs to determine whether
the pixel is a corner or not, and hence can be run faster than

Table 9 BFSK—Decoding time (s).

Decoding time (s)

Type Corner2 Corner Block C4 JBIG

Active 5.43 30.01 163.76 6.59

Poly 8.50 46.84 248.74 10.57

Metal 9.65 59.00 279.89 14.61

Via 8.97 50.10 278.68 12.88

Net Average 6.71 38.57 196.86 9.06
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Corner during the transform process. Moreover, in contrast to
the memory circuit, the frequent pattern replacement process
was trivial for the BFSK circuit.

5 Conclusion
As we have shown in Sec. 4, the algorithm Corner2 requires
the least decoder memory and simultaneously has the fastest
decoding time and attains the highest compression ratios for
both irregular (BFSK) and regular (memory core) circuits.
The main improvement of Corner2 over C4 came from how
we handle irregular and regular parts of the circuit layout im-
age, and the efficiency of the final entropy coder. First, we use
the corner location rather than prediction to handle the irreg-
ular parts. Because the context prediction used in C4 easily
fails to predict the corners, it resulted in a longer bit sequence.
Second, we use the frequent patterns extracted from the hi-
erarchical circuit representation and apply the patterns to the
entire circuit layout image. The main contribution of this is
that using predefined frequent patterns are more efficient than
the LZ-based copying of C4 when the copy region is limited
to the previous line (for minimal decoder memory). Finally,
our entropy encoder is more efficient for dealing with the
long run of zeroes produced by the frequent pattern matching
and corner transformation than the combinatorial coder used
in C4.

The Corner2 decoder consists of arithmetic decoding,
run length decoding, frequent pattern replacement, and cor-
ner transformation. Since arithmetic and RLE decoding are
widely implemented in hardware, and the frequent pattern
replacement and corner transformation processes can be im-
plemented using simple branches, compares, and memory
copies, the Corner2 decoding process can be implemented in
hardware.

Because our work provides better compression perfor-
mance, it can be used to solve the data delivery problem of
maskless lithography systems with smaller features. More-
over, since our decoding speed is faster than C4 and Block
C4, we can obtain higher throughput.

Finally, even though we only have been able to test the
algorithm for 250/500 nm circuits, we can argue that it will
work well for sub-90 nm circuits as well because as tech-
nology develops there are more geometrical constraints that
are necessary to guarantee yield. Therefore, the layout poly-
gon shapes that can be used in designing circuits tend to
become simpler. However, the polygon density does not
increase because as the technology develops, the targeting
pixel size becomes smaller. Hence, when the circuit den-
sity doubles, the image size in terms of the number of pix-
els doubles, but the polygon density remains fixed. Since
the performance of Corner2 depends on the corner/frequent
pattern density within the layout image, the performance
is expected to remain the same independent of the process
technology.

For future research, we will investigate better frequent pat-
tern extraction techniques. As we have mentioned in Sec. 2.2,
extracting frequent patterns from the GDSII/OASIS format
is simple and promising. However, this approach may not
cover the entire image layer because of possible pattern mis-
matches coming from pattern truncation during the genera-
tion of binary layout images. We expect that a further study
on pattern extraction would yield better compression results.

Since the application is of the compress once, decompress
multiple times variety, increasing the encoder complexity is
not critical so long as the complexity of the decoding process
remains fixed.
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