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Abstract. Hybrid metrology, e.g., the combination of several measurement techniques to determine critical
dimensions, is an increasingly important approach to meet the needs of the semiconductor industry. A proper
use of hybrid metrology may yield not only more reliable estimates for the quantitative characterization of three-
dimensional (3-D) structures but also a more realistic estimation of the corresponding uncertainties. Recent
developments at the National Institute of Standards and Technology feature the combination of optical critical
dimension measurements and scanning electron microscope results. The hybrid methodology offers the poten-
tial to make measurements of essential 3-D attributes that may not be feasible otherwise. However, combining
techniques gives rise to essential challenges in error analysis and comparing results from different instrument
models, especially the effect of systematic and highly correlated errors in the measurement on the χ2 function
that is minimized. Both hypothetical examples and measurement data are used to illustrate solutions to these
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1 Introduction
Hybrid metrology, e.g., the combination of distinct measure-
ment techniques to determine critical dimensions (CDs), is
an increasingly important approach to meet the needs of the
semiconductor industry. A proper use of hybrid metrology
may yield not only more reliable estimates for the quantita-
tive characterization of three-dimensional (3-D) structures
but also a more realistic estimation of the corresponding
uncertainties. Ideally it helps to reduce the overall uncertain-
ties by combining the individual strengths of each of the
measurement techniques, making subnanometer uncertain-
ties a realistic goal as CDs approach 10 nm.

Recent developments1–3 in hybrid metrology at the
National Institute of Standards and Technology (NIST) fea-
ture the combination of optical critical dimension (OCD)
and scanning electron microscope (SEM) measurements.
The challenges and possible solutions have been outlined by
some of these authors in a previous proceedings paper.3

Various methods have been presented to combine measure-
ment results from different tool platforms, revealing two
related but distinct challenges. There must be an overlapping
parameter set for combined regression,3 such that each indi-
vidual parametric geometry must share at least one parameter
in common (e.g., height). Additionally a priori, each individ-
ual method must also yield parametric values that together
with their uncertainties are statistically consistent, usually
quantified by a Z-test; see Ref. 2 for more details.

This paper can be seen as a continuation of that work
and Ref. 4, with an emphasis on the proper treatment of
the measurement errors, including highly correlated and sys-
tematic errors and their influence on hybrid metrology. Tool-
induced errors for OCD and scale errors for SEM are inves-
tigated, and it is shown how the parametric uncertainties can
be decreased if those issues are addressed accurately in the
hybridization.

Since the term hybrid metrology has gained increased sig-
nificance in the dimensional metrology community outside
NIST,5–7 we will start this work with a short overview of two
of the most common techniques in Sec. 2, namely the
Bayesian approach and combined regression. The measured
targets and the generalized parameter sets that describe them
are discussed in Sec. 3 before we give a detailed description
of the performed error analysis for both OCD and SEM in
Sec. 4 and their impact on the hybridization in Sec. 5. We
will close with the conclusions in Sec. 6.

2 Hybrid Metrology
Hybrid metrology has gained significant recognition in
recent times as an approach to considerably reduce paramet-
ric uncertainties by combining different measurements of the
same measurand. We want to use this section to identify the
main differences and similarities of two of the most common
hybrid approaches, namely the use of a priori information in
a Bayesian sense and combined regression. We start with
the Bayesian approach and continue with combined regres-
sion. In order to keep the notation simple, throughout this
section we will assume that only two measurement tech-
niques are combined with each individual method, yielding
a statistically consistent set of parameters. Note that even if
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some of the notations are different, the presented approaches
are equivalent to those given in Ref. 2. Additional informa-
tion for those who are not familiar with all of the terminology
of Bayesian data analysis can be found in Refs. 8–10.

2.1 Bayesian Approach

The Bayesian approach treats information provided by each
of the measurement tools quite differently. The first tool pro-
vides m values of measurement data that can be described as
a vector in an m-dimensional real vector space

EQ-TARGET;temp:intralink-;e001;63;637y ¼ ðy1; : : : ; ymÞT ∈ Rm (1)

that contains only indirect information about the quantity of
interest. We therefore need to analyze the data in terms of an
inverse problem.11 A common approach to solve an inverse
problem is to set it up as a regression problem. Initially, we
need to provide a model function

EQ-TARGET;temp:intralink-;e002;63;551f∶Rn → Rm; fðpÞ ¼ ½f1ðpÞ; : : : ; fmðpÞ�T (2)

that maps the parameters of interest (e.g., the height, the
width, etc.), that are identified with a vector in an n-dimen-
sional real vector space p ¼ ðp1; : : : ; pnÞT, to the simulated
quantities. These simulated data are generated in the same
m-dimensional space defined by the measurement. The
regression problem then amounts to minimizing the differ-
ence between the modeled and the measured data. We there-
fore solve for the parameter vector p̂ that minimizes the
so-called χ2 function, measuring the goodness of fit of the
simulation to the measurement data given by the weighted
norm

EQ-TARGET;temp:intralink-;e003;63;398χ2ðpÞ ¼ kfðpÞ − yk2 ¼ ½fðpÞ − y�TV−1½fðpÞ − y�: (3)

In this formulation, we implicitly assume that the meas-
urement data y are a noisy realization of the model, and that
we have an additive error model where

EQ-TARGET;temp:intralink-;e004;63;334y ¼ fðpÞ þ ϵ: (4)

Note that the errors that are added to each of the model
values can also be arranged as an m-dimensional vector. We
assume the errors to be normally distributed with zero mean
and m ×m covariance matrix Σϵ. The matrix V ∈ Rm×m in
Eq. (3) is usually chosen to be an estimate of Σϵ. We will
discuss the importance of a good choice of V in more detail
later. If we ignore normalization constants, we see that the
function in Eq. (3) is proportional to the negative log-like-
lihood function for the chosen error model.10 We furthermore
assume that we have information about the parameter vector
of interest p, such as an estimate μp and an uncertainty or,
more specifically, a covariance matrix Σp. This can be based
on expert knowledge or an already completed analysis of
measurement data from a second measurement tool. If we
assume the parameters of interest to be normally distributed,
we have all the information we need to express this prior
information in terms of a probability density function
(PDF). This PDF is usually called the prior distribution πpri.
In the case of a normally distributed random vector p, it is
given by

EQ-TARGET;temp:intralink-;e005;326;752

πpri∶Rn→R;

πpriðpÞ¼
�
ð2πÞndet

�X
p

��
−1∕2

exp

�
−
1

2
ðp−μpÞT

P−1
p ðp−μpÞ

�
:

(5)

By subtracting the prior distribution or, more precisely, its
logarithm, from the function in Eq. (3), the negative log-like-
lihood, we get a function that is proportional to the negative
logarithm of the posterior probability distribution. If we
again ignore normalization constants we get the function that
serves as the modified χ2 function

EQ-TARGET;temp:intralink-;e006;326;613χ̃2ðpÞ ¼ ½fðpÞ− y�TV−1½fðpÞ− y� þ ðp− μpÞT
P−1

p ðp− μpÞ:
(6)

Note that the second term that reflects the prior information
acts as a penalty or regularization term, penalizing possible
solutions to the inverse problem for measurement tool 1 that
are not consistent with the prior information. The function in
Eq. (6) is finally minimized to find the parameter vector esti-
mate p̂.

2.2 Combined Regression

In combined regression we start with two distinct sets of
measurement data, yA and yB, that come from two different
measurement techniques. Their model functions, fAðpAÞ and
fBðpBÞ, depend on parameter vectors pA and pB, respec-
tively. The models must have at least one common model
parameter in order to perform combined regression. Deter-
mining what the common parameters of the two models
are can be a challenging task; see Ref. 3 for further details.
In combined regression we define the combined χ2 function
to be the sum of the individual χ2 functions for each of the
tools. Note that this is only possible if we assume that the two
measurements are independent of each other

EQ-TARGET;temp:intralink-;e007;326;342χ2ðpA∪BÞ ¼ χ2AðpAÞ þ χ2BðpBÞ: (7)

Here pA∪B is the vector that consists of the union of the ele-
ments in pA and pB. The solution p̂A∪B to the inverse prob-
lem in combined regression is then found by minimizing the
above combined χ2 function.

3 Measured Targets and Generalized Parameter
Sets

The investigated targets and the geometrical parameteriza-
tions used have already been described in detail in Ref. 3,
so we will only give a brief overview. We investigate finite
30-line arrays of Si on Si with a thin native conformal oxide
(see Fig. 1). The nominal widths are 14, 16, and 18 nm. A
schematic representation of the geometrical parameteriza-
tions can be found in Fig. 2. For the OCD analysis, the geom-
etry is fully characterized by the height, width, Δtop, and
Δbot of a single line. The physics by which this geometry
interacts with incident light to produce a signal was approxi-
mated by the rigorous coupled-wave analysis (RCWA) model
that is based on a semianalytical treatment of Maxwell’s
equations.12,13 The OCD data used in this study have been
generated using this RCWA model for 30 lines and a meas-
urement setup similar to the actual experiment at NIST.14,15
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The nominal values are height¼ 36.0 nm, width ¼ 17.1 nm,
Δtop ¼ 2.9 nm, and Δbot ¼ 0.5 nm. The noise that has
been added to this simulated data has been generated using
the same correlated errors as described in Sec. 4.1.

The initial geometrical parameters for the SEM fit of each
line included the line position, its width at half height, and its
left and right sidewall edge slopes (represented by the edge
widths). Although the left and right sidewall slopes of an
individual line often differed, this was a manifestation of
roughness. On average, left and right edge widths were indis-
tinguishable. Consequently, for hybridization with OCD,
which averages over a comparatively large area, it was suf-
ficient to treat sidewall width as a single parameter.
Similarly, line position was not important for OCD. Hybrid-
ization was limited, therefore, to two parameters: the width at
the middle and Δtop. The geometry is related to the mea-
sured signal by JMONSEL, a single-scattering Monte Carlo
simulator with a choice among a number of physical models
of the scattering phenomena that affect electron transport.
We used tabulated Mott cross sections to model scattering
of electrons from nuclei and a dielectric function theory

approach to secondary electron generation. Electron–phonon
interactions and electron refraction (or total internal reflec-
tion) at the vacuum/Si interface were included. Details
of JMONSELs treatment of these models are available
elsewhere.16

4 Error Analysis
Equipped with the proper set of overlapping parameters, we
will now focus on a more realistic modeling of the present
measurement data. We will investigate the influence of tool-
induced measurement errors for OCD and the influence of
scaling errors for SEM.

4.1 Optical Critical Dimension

The specific way in which the OCD measurements are per-
formed, by taking images on the xy plane going through
focus, requires increased attention to possible systematic and
correlated errors. For example, one can imagine that being
slightly off axis in the illumination will affect the symmetry
of the entire set of collected images. Determining such cor-
relations from measurement data alone is often not possible,
and other methods need to be developed in order to give a
quantitative description of those effects. We use the Monte
Carlo method,17 which is based on the following reasoning.
If we denote by ν the vector of k fixed parameters of the
measurement setup, we can make use of the following more
general model function:

EQ-TARGET;temp:intralink-;e008;326;449f∶Rnþk →Rm; fðp;νÞ¼ ½f1ðp;νÞ; : : : ;fmðp;νÞ�T: (8)

The effect that a slight deviation of the parameters ν from
the nominal values ν0 has upon the simulated image can then
be estimated from the following five steps:

1. Assume a distribution for ν, based on tool specifica-
tions, expert knowledge, etc.

2. Draw a sample fνigi¼1;: : : ;N from the distribution.
3. Calculate ffðp;νiÞ¼½f1ðp;νiÞ;:::;fmðp;νiÞ�Tgi¼1;:::;N .
4. Define ri ¼ fðp; ν0Þ − fðp; νiÞ.
5. Calculate the sample covariance matrix via

EQ-TARGET;temp:intralink-;e009;326;298Ṽ ¼ 1

N − 1

XN
i¼1

ðri − r̄Þðri − r̄ÞT: (9)

In this paper, the ν vector included components for the
collection numerical aperture (CNA), illumination numerical
aperture (INA), focus heights, and phase. This Monte Carlo
procedure, therefore, estimates the effect of errors propa-
gated from variations in those instrument parameters, e.g.,
we choose the INA to be normally distributed with a mean
of 0.13 and a standard deviation of 0.01. Figures 3 and 4
show a graphical representation of the first 752 entries of the
sample covariance matrix that correspond to the first four
focus heights in X polarization for phase, focus, illumination,
and CNA variations, along with the respective concatenated
images.

One can clearly see both the positive and negative corre-
lation between errors as colored areas off the diagonal. In
order to have a reliable model for the measurement errors, it

Fig. 1 Scanning electron microscope (SEM) image showing the 30
line arrays. Horizontal field of view is 3.63 μm.

Fig. 2 Initial parameters for (a) optical critical dimension (OCD) and
(b) SEMmodeling. The parameters that are in bold font are part of the
reduced subset of these parameters that has been used in this work.
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is therefore very important to account for this effect in the
covariance matrix that is being used in the χ2 function [see
Eq. (3)]. This has an influence not only on the best fit values,
but also on the estimation of the parametric uncertainties or,
more precisely, the covariance matrix Σ, diagonal elements
of which are the uncertainties in the estimated parameters,
given by2

EQ-TARGET;temp:intralink-;e010;63;365

X
¼ ðJTV−1JÞ−1: (10)

Here J denotes the Jacobian matrix, i.e., the matrix of all
first-order partial derivatives of the vector-valued model
function f , at the best fit vector p̂. A comparison of the para-
metric uncertainties based on using a diagonal V and the full
V in Eq. (10) can be found in Table 1.

Note that there is a notable difference between the esti-
mated parametric uncertainties, with the most significant
change in the uncertainty of the width. It is also very impor-
tant to note that a given parametric uncertainty might
increase or decrease if correlations in the measurement data
are taken into account. Thus, a general statement about the
effect correlated errors have on the estimated parametric
uncertainties cannot be given, and it must be investigated
separately for each new problem.

4.2 Scaling Errors in Scanning Electron Microscope

The biggest contribution to the SEM’s measurement error in
this experiment is due to pixel calibration. Errors in this cal-
ibration directly influence the obtained values for the CDs.
The usual approach is to simply add the uncertainty due to
the calibration in quadrature with the estimated parametric
uncertainty after the reconstruction. The estimation of the
parameters of interest, i.e., the vector p and their uncertain-
ties in combined regression, are based on the combination of

the OCD and the SEM data, while the error induced by pixel
calibration only affects SEM data; hence, it is not possible
to simply include the uncertainty due to the calibration after-
ward. We will therefore model the effect a variation in the
scale has on the measurement in a simple way, multiplying
the model parameter vector p ¼ ðwidth;ΔtopÞT by a scaling
parameter κ such that the modified model is given by

EQ-TARGET;temp:intralink-;e011;326;365f̃∶R3 → Rm; f̃ðκ; pÞ ¼ fðκ · pÞ (11)

with f being the SEM’s model function. In this description,
κ ¼ 1 corresponds to no scale error, κ ¼ 1.01 to 1% scale
error, etc. It is clear that this approach leads to a high para-
metric correlation in the parameters of the model. We will
explain this effect using a simple model with an added scal-
ing factor in the following:

Let

EQ-TARGET;temp:intralink-;e012;326;256

f∶R → Rm; fðxÞ ¼ ½f1ðxÞ; : : : ; fmðxÞ�T; and

J ¼ ðJi;1Þi¼1;: : : ;m; Ji;1 ¼ Dfi (12)

be a model function depending on only one parameter x and
denote byDfi the derivative of fi with respect to this param-
eter. If we assume the measurement errors to be independent
and identically distributed (i.i.d.) with unit variance [hence
V ¼ ðδi;jÞi;j¼1;: : : ;m] we have for the estimated covariance
matrix

EQ-TARGET;temp:intralink-;e013;326;139

X
¼ ðJTV−1JÞ−1; with JTV−1J ¼

Xm
i¼1

½Dfi�2; (13)

which is well defined if detðJTV−1JÞ ¼ P
m
i¼1 ½Dfi�2 ≠ 0.
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Fig. 3 Estimated covariance matrices for variations in the (a) phase and (b) focus. Random phase per-
turbations normally distributed with a mean of 0 rad and a standard deviation of π∕5 rad, and focus offset
normally distributed with a mean of 0 nm and a standard deviation of 2 nm. The variance induced by
phase variations is 3 orders of magnitude greater than those from focus variation. Four concatenated
OCD intensity profiles are duplicated below the matrices in Figs. 3 and 4 to illustrate the positional
dependence of the covariance. In general changes correlate to the position of the finite target.
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Now assume that we add a scale parameter to the above
model by defining a slightly modified function

EQ-TARGET;temp:intralink-;e014;63;441

F∶R2 → Rm; Fðκ; xÞ ¼ fðκ · xÞ; and

J ¼ ðJi;jÞi¼1;: : : ;m;j¼1;2; Ji;1 ¼ x · Dfi;

Ji;2 ¼ κ · Dfi: (14)

The estimated covariance matrix for this two-parameter
model is then given by

EQ-TARGET;temp:intralink-;e015;63;351 X
¼ ðJTV−1JÞ−1; with

JTV−1J ¼
"P

m
i¼1 x

2½Dfi�2
P

m
i¼1 κx½Dfi�2P

m
i¼1 κx½Dfi�2

P
m
i¼1 κ

2½Dfi�2

#
: (15)

However,
EQ-TARGET;temp:intralink-;e016;326;452

detðJTV−1JÞ ¼
Xm
i¼1

x2½Dfi�2 ·
Xm
i¼1

κ2½Dfi�2

−
�Xm

i¼1

κx½Dfi�2
�

2

¼ 0: (16)

Since the above term is always equal to zero, the esti-
mated covariance matrix

P
is not defined and we cannot

assign a parametric uncertainty. Since we have prior infor-
mation about the scale, the actual error lies between 1%
and 2%; we can use the Bayesian approach as described
in Refs. 2 and 9 under the premise that the prior information
can be expressed in terms of normal distributions. The prior
information on the parameter κ is treated as an additional
data point the model function has to account for, such that
we have a function that still depends on κ and x but
now maps into an (mþ 1)-dimensional space, with the
(mþ 1)’th value simply being κ. This also adds additional
terms to the Jacobian, Jmþ1;1 ¼ ð∂∕∂κÞκ ¼ 1 and Jmþ1;2 ¼
ð∂∕∂xÞκ ¼ 0, such that
EQ-TARGET;temp:intralink-;e017;326;217

F̃∶R2 → Rmþ1; F̃ðκ; xÞ ¼ ½Fðκ; xÞ; κ�T; and

Jmþ1;1 ¼ 1; Jmþ1;2 ¼ 0: (17)

Since we know that κ ∼N ð1; σ2κÞ, we add an additional
entry to V, namely Vmþ1;mþ1 ¼ σ2κ with σκ ¼ 0.01 − 0.02,
and obtain the estimated covariance matrix, again using
Eqs. (10) and (13),
EQ-TARGET;temp:intralink-;e018;326;123 X

¼ ðJTV−1JÞ−1; with

JTV−1J ¼
"P

m
i¼1 x

2½Dfi�2 þ 1
σ2κ

P
m
i¼1 κx½Dfi�2P

m
i¼1 κx½Dfi�2

P
m
i¼1 κ

2½Dfi�2

#
(18)

Table 1 Estimates of the parametric uncertainties for simulated OCD
data using diagonal V, i.e., only accounting for uncorrelated random
noise, and full V, i.e., taking correlations into account.

Width (nm) Δtop (nm) Δbot (nm) Height (nm)

p̂ 17.09 2.04 0.10 35.37

σ diagonalV 0.05 1.37 0.53 0.97

σ fullV 0.14 1.29 0.63 0.92
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Fig. 4 Estimated covariance matrices for variations in the (a) illumination numerical aperture (INA) and
(b) collection numerical aperture (CNA). INA normally distributed with a mean of 0.13 and a standard
deviation of 0.01, CNA normally distributed with a mean of 0.95 and a standard deviation of 0.1. The
variances induced by INA and CNA variations are one magnitude less than those from phase errors.
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and
EQ-TARGET;temp:intralink-;e019;63;540

detðJTV−1JÞ ¼
�Xm

i¼1

x2½Dfi�2 þ
1

σ2κ

�
·
Xm
i¼1

κ2½Dfi�2

−
�Xm

i¼1

κx½Dfi�2
�

2

: (19)

Equation (19) implies that as long as the prior knowledge
about κ is not too vague, i.e., σκ is not too large, the above
term is in general not equal to zero and the estimated covari-
ance matrix is well defined. A graphical representation of the
above-described phenomenon for the measured SEM data is
shown in Fig. 5. Note that the χ2 surface with the added prior
information about κ has a distinct minimum at p̂ ¼
ð1; 17.01 nm; 2.86 nmÞ, while it is hard to determine
where the minimum is for the χ2 surface without prior
information. In fact, there is not a single distinct minimum
but an infinite set of possible minima. Obviously, p̂ ¼
ð1; 17.01 nm; 2.86 nmÞ is also the minimum for the χ2

without prior information, but so is any vector p̂ ¼
½κ; ð17.01∕κÞ nm; ð2.86∕κÞ nm� with κ ≠ 0. Defining a

parametric uncertainty is therefore not possible. In contrast,
the error estimation for the model with prior information for
the scale κ yields a 2% parametric uncertainty if we assume
an error of 2% in the scale as expected; here, this strict lin-
earity only holds since the random errors in the SEM data are
much smaller than those attributed to the scale error.

5 Results
We now combine the results that we found in the previous
section with the hybridization of OCD and SEM data by
combined regression. As pointed out in Sec. 2, this is
done by minimizing the sum of the respective χ2 functions.
Note that we use prior information about the scale κ, so that
the χ2 function for the SEM data is modified as shown in
Eq. (6). The individual χ2 surfaces in dependence on the
width and Δtop are shown in Figs. 6 and 7. For these
plots, the height and Δbot have been fixed for OCD. The
plots also show the individual minima and the assigned para-
metric uncertainties. The χ2 surface from the combined
regression is shown in Fig. 8, and the results from the com-
bined regression are presented in Table 2. The combined
minimum is close to the SEM’s minimum and the parametric

Fig. 5 χ2 surface for SEM data (a) without and (b) with Bayesian input for the scale κ.

Fig. 6 χ2 surfaces for the SEM data.
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uncertainties for combined regression are lower than the
individual ones, even for the parameters that are only present
in the OCD model. This is due to the strong parametric cor-
relations in the models.

6 Discussion and Conclusion
Following the approach outlined in Ref. 3, we studied the
challenges in hybrid metrology due to measurement errors.
Those included highly correlated tool-induced errors for the
OCD data and systematic errors due to scaling errors in
SEM. We have demonstrated how slight variations in the
measurement setup for OCD, e.g., in the focus heights,
the phase, INA, and CNA lead to highly correlated errors
in the measurement data that manifest themselves as nonzero
elements in the sample covariance matrix V. Including those
off-diagonal elements in the estimation of a parametric
uncertainty can lead to either an increased or a decreased
parametric uncertainty compared to the case where only
the diagonal of the V matrix is used, depending on the indi-
vidual nature of that particular full V matrix. Furthermore,
we demonstrated the influence of scaling errors on the analy-
sis of SEM data. Attempting to account for such scale errors
by including the scale as a fully free parameter would lead to

Fig. 7 χ2 surfaces for the simulated OCD data.

Fig. 8 Combined χ2 surface for the hybridization.

Table 2 Parameter estimates and parametric uncertainties obtained
from combined regression.

Width (nm) Δtop (nm) Δbot (nm) Height (nm)

p̂hybrid 17.01 2.94 0.59 36.11

σhybrid 0.23 0.04 0.58 0.21

σSEM 0.34 0.06 — —

σOCD 0.14 1.29 0.63 0.92
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unreasonable results due to strong, or even perfect correla-
tions. This problem has been solved using prior information
about the scale in a Bayesian approach. Finally, we demon-
strated how the more sophisticated error analyses could be
used in the hybridization of OCD and SEM data. With
the proper treatment of those errors, we could achieve a sub-
nanometer parametric uncertainty. It is important to note that
the presented framework can be extended to include addi-
tional measurement techniques, such as atomic force micros-
copy or CD small angle X-ray scattering. In addition, it may
also be applied across a homogeneous multiple-tool plat-
form. However, for every added measurement technique, it
is crucial to perform a careful error analysis in order to use its
full capabilities.
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