This contribution is focused on the innovative aspects of the design of the Laser Guide Star (LGS) Facility for the Gran Telescopio Canarias (GTC) Adaptive Optics (GTCAO) System [6]. After a trade-off process considering different alternatives, a preliminary opto-mechanical design was defined, based on a “TOPTICA SodiumStar” laser to be launched on-axis. To maximize throughput, different novelties around the optical, and mechanical design of the Laser Launch System, including the Laser Head, the Beam Transfer Optics and the Launch Telescope are emphasized in this paper. In particular, all the elements of the Laser Launch System have been compacted to be placed at the backside envelope of the GTC M2 mechatronics. To fit in that envelope the thermal enclosure of the Laser Head had to be redefined to avoid mechanical interferences and science beam vignetting. An innovative closed-loop Laser Head cooling approach was defined to be also arranged at the backside of GTC M2. Performance simulations running in parallel to the on-axis LGS design could not determine any difference in performance between the on-axis and the off-axis launch. Hence, considering the higher packaging and maintenance complexity required by the on-axis launch, GTC decided to define the off-axis configuration as the new baseline approach. All the solutions already defined for the on-axis approach that were applicable to the new off-axis baseline were reused. To reduce the cost of future upgrades, the LGS design allows generating and launching several LGS with just one launch telescope splitting the light from the Laser Head. In parallel with keeping the volume of the facility to a minimum, an effort to keep its maintenance as simple as possible has been also made to avoid the impact on the telescope operational costs.
|