We present our 2nd generation handheld simultaneous multispectral frequency-domain FLIM endoscopic system for label-free metabolic imaging of oral cancer, with enhanced optical performance and system usability. Our custom-designed and 3D-printed handheld endoscope consists of an enclosure (6 x 3 x 3 cm3) with a rigid probe (1 cm diameter, 9 cm length) that weighs less than 125 g with all the system components, which, compared to our previous system, is significantly smaller and lighter, and has improved ergonomics and usability. The enclosure has mounts for a dual axes bi-directional MEMS scanner and a dichroic mirror, and plug-and-play ports for excitation, emission collection and rigid probe optics. The rigid probe used for oral mucosa imaging contains a three-lens imaging system that, compared to our previous system, has: an increased field of view (FOV) (6 x 6 mm2 vs. 16 x 16 mm2), improved lateral resolution (36 μm in the center and 65 μm at the edge, diffraction-limited performance across a central ± 5.5 mm field), and an extended working distance (10 mm vs. 40 mm). A 375 nm CW laser is used as the excitation source, and fluorescence emission is spectrally divided into three emission bands (405±10 nm, 440±20 nm, and 525±25 nm) targeting collagen, NADH, and FAD, which are relevant for early detection of oral cancer. Fluorescence emission is then detected by three APDs and further processed onboard an FPGA. Our clinically compatible handheld endoscope allows for noninvasive and fast in situ clinical metabolic imaging of the oral mucosa.
|