Silicon photonics is considered to be the leading platform to achieve faster data transfer speeds on-chip. However, the weak electro-optic coefficient of silicon limits the maximum achievable single channel data rates. A hybrid solution consisting of a silicon photonic backbone and an incorporated optical phase change material that provides improved optical functionality may provide the solution for realizing broadband, low power, small footprint on-chip photonic devices capable of achieving record modulation speed. In this presentation, we discuss theoretical and experimental work integrating vanadium dioxide and GST in thermo-optic, electro-optic, and all-optical silicon photonic devices. Future directions will also be discussed.
|