Presentation + Paper
22 April 2020 Target recognition using the time-frequency representation of the impulse response
Author Affiliations +
Abstract
The backscatter of a target illuminated by a stepped-frequency radar represents the frequency response of the target as seen by the radar and it can be modeled as a sum of exponentials. The inverse Fourier of the backscatter represents the target impulse response. A time-frequency analysis (using Wigner-Ville) of the target backscatter should yield features that are directly related to target scattering centers. These features can then be used for target recognition purposes. This concept is first tested on a synthetic radar target that consists of five scattering centers. Next, the frequency response of real backscatter of commercial aircraft models is examined using time-frequency analysis. The instantaneous frequency and the group delay as extracted using the pseudo Wigner-Ville distribution are used as target recognition features. The classification results are compared with those obtained using an optimal maximum-likelihood classifier. The performance of time-frequency extracted features as target recognition tools is investigated in all scenarios of complete or partial azimuth knowledge, and additive noise. The time-frequency analysis of the frequency response of the synthetic target is examined and compared with that expected using a closed-form solution.
Conference Presentation
© (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ismail Jouny "Target recognition using the time-frequency representation of the impulse response", Proc. SPIE 11423, Signal Processing, Sensor/Information Fusion, and Target Recognition XXIX, 114230X (22 April 2020); https://doi.org/10.1117/12.2550649
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Time-frequency analysis

Radar

Target recognition

Signal to noise ratio

Scattering

Backscatter

Contamination

Back to Top