Poster + Presentation + Paper
10 October 2020 Phase space retrieval and the imaging system effect
Author Affiliations +
Conference Poster
Abstract
Phase space optics allows the four-dimensional (4D) simultaneous visualization of both space (x) and spatial frequency (u) information. The Wigner distribution function (WDF) is commonly used to represent the phase space characterization. Compared with the coherent optical field expressed by two-dimensional (2D) complex amplitude, the 4D WDF (2D space and 2D spatial frequency) can characterize optical field with arbitrary coherent state. It is especially advantageous for the characterization of partially coherent optical fields. The WDF is real and may have negative values, which are the result of phase-space interference. In this paper, an improved phase-space retrieval method is demonstrated. First, capture three-dimensional intensity focal stack by camera sensors. Then, phase space tomography (PST) combined with a non-linear iterative algorithm is conducted to reconstruct the whole WDF. We further analyzed the effect of the imaging system, i.e., the illumination aperture and the aperture of objective lens effect.
Conference Presentation
© (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Runnan Zhang, Jiasong Sun, Chao Zuo, and Qian Chen "Phase space retrieval and the imaging system effect", Proc. SPIE 11549, Advanced Optical Imaging Technologies III, 1154917 (10 October 2020); https://doi.org/10.1117/12.2573628
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Wigner distribution functions

Phase measurement

Spatial frequencies

Algorithms

Cameras

Imaging systems

Numerical simulations

Back to Top