PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The feasibility of acquiring multi-energy CT data through slow modulation of the kVp as an alternative to photon-counting detectors (PCDs) is currently under exploration. A low kVp-switching rate can be enabled with a conventional CT system but raises challenges due to missing sinogram views. Our previous work used a CNN-based method for sinogram completion by generating full-sampled images from undersampled sinograms, providing an acceptable image quality at a 22°/kVp switching rate. The purpose of this study was to investigate a GAN-based spectral sinogram completion method for enabling a lower kVp switching rate. A Pix2Pix GAN model with paired undersampled sinogram of 45° or 120° projections/kVp and its corresponding full-sampled sinogram was implemented and trained. The completed data was subsequently used to perform sinogram domain material decomposition. Our results on a simulated FORBILD abdomen phantom dataset showed that the GAN-based method can further lower the kVp switching rate to 45° projections/kVp. The proposed GAN-based sinogram completion method facilitates slow-kVp switching acquisitions and thus further relaxes hardware requirements.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Wenchao Cao, Nadav Shapira, Peter B. Noël, "GAN-based sinogram completion for slow triple kVp switching CT," Proc. SPIE 11595, Medical Imaging 2021: Physics of Medical Imaging, 115952O (15 February 2021); https://doi.org/10.1117/12.2580735