In this work, a five-band metamaterial absorber (MMA) for temperature sensing application in terahertz region is analyzed. The MMA is composed of three layers. The bottom layer is the metallic film, the middle dielectric layer is the indium antimonide (InSb) and the top layer is the metallic pattern, in which five resonance peaks are generated. With utilizing the dielectric thermo sensitive property of InSb, the resonant absorption is tunable by varying temperature. The electric current on the MMA is investigated to better understand the physical mechanism of the resonances, revealing the resonances attributed to the high-order magnetic resonances. The multi-band absorber is insensitive to the polarization angle, and be with ultrathin thickness of structure. This design of the MMA provides a new approach for electromagnetic stealth, sensing and imaging.
|