The Laser Interferometer Space Antenna (LISA) is a large-scale space mission design to directly measure gravitational waves using laser interferometry techniques. The constellation of three spacecraft, each separated by 2:5 Gm, will follow a heliocentric orbit with a constant distance from Earth (~20°). Light exchanges between the spacecraft will be enabled by 300mm telescopes used to simultaneously transmit and receive. Each telescope is part of the interferometer, and each must meet tight requirements on its dimensional stability; below 1pm= pHz in the LISA band, μm-length stability over 10 years of mission duration, and below ppb backscatter of the transmitted light. Here, we present our progress in developing ground support equipment for the LISA telescope ground verification. We also report on recent experimental results of the dimensional stability for the telescope test structure; a key part of the ground support equipment, and simulations of the optical design and internal and external alignment tolerances of the test structure and the telescope within it.
|