Presentation + Paper
4 April 2022 Evaluating the impact of MR image harmonization on thalamus deep network segmentation
Author Affiliations +
Abstract
Medical image segmentation is one of the core tasks of medical image analysis. Automatic segmentation of brain magnetic resonance images (MRIs) can be used to visualize and track changes of the brain’s anatomical structures that may occur due to normal aging or disease. Machine learning techniques are widely used in automatic structure segmentation. However, the contrast variation between the training and testing data makes it difficult for segmentation algorithms to generate consistent results. To address this problem, an image–to– image translation technique called MR image harmonization can be used to match the contrast between different data sets. It is important for the harmonization to transform image intensity while maintaining the underlying anatomy. In this paper, we present a 3D U-Net algorithm to segment the thalamus from multiple MR image modalities and investigate the impact of harmonization on the segmentation algorithm. Manual delineations of thalamic nuclei on two data sets are available. However, we aim to analyze the thalamus in another large data set where ground truth labels are lacking. We trained two segmentation networks, one with unharmonized images and the other with harmonized images, on one data set with manual labels, and compared their performances on the other data set with manual labels. These two data groups were diagnosed with two brain disorders and were acquired with similar imaging protocols. The harmonization target is the large data set without manual labels, which also has a different imaging protocol. The networks trained on unharmonized and harmonized data showed no significant difference when evaluating on the other data set; demonstrating that image harmonization can maintain the anatomy and does not affect the segmentation task. The two networks were evaluated on the harmonization target data set and the network trained on harmonized data showed significant improvement over the network trained on unharmonized data. Therefore, the network trained on harmonized data provides the potential to process large amounts of data from other sites, even in the absence of site-specific training data.
Conference Presentation
© (2022) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Muhan Shao, Lianrui Zuo, Aaron Carass, Jiachen Zhuo, Rao P. Gullapalli, and Jerry L. Prince "Evaluating the impact of MR image harmonization on thalamus deep network segmentation", Proc. SPIE 12032, Medical Imaging 2022: Image Processing, 120320H (4 April 2022); https://doi.org/10.1117/12.2613159
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Image segmentation

Thalamus

Magnetic resonance imaging

Brain

Image processing algorithms and systems

Neuroimaging

Diffusion tensor imaging

Back to Top