Aim to Japan's participation in the Artemis program in the 2030s in mind, we pursue the feasibility studies of lunar telescope, including astronomical observations. Focusing on the meter-wavelength observations (observing frequency of lower than 50MHz), which cannot be observed in the harsh environments on the ground from the Earth, including the ionosphere and radio frequency interference, we have reported on conceptual design based on the results of our feasibility studies in Japan. The main scientific objectives we have studied so far are broadly covering the following three areas: astronomy and astrophysics, planetary science, and lunar science. In astrophysics, the observing frequency range of 1- 50MHz gives us an opportunity to observe the 21 cm global signal (spatial average temperature) from the Dark Ages, which is determined purely by cosmology and is not affected by first-generation star formation and cosmic reionization. In astronomy, it provides the images of the Milky Way galaxy at meter wavelengths. In planetary science, it will be possible to study the environments of exoplanets through 1) radio waves from auroras on gas giant exoplanets like Jupiter and 2) stellar radio-wave bursts. In lunar science, it has the potential to observationally study the lunar ionosphere, subsurface structure, and dust environment. At present, we plan the meter-wavelength interferometric array as lunar telescope, including the single-dish observations. In this paper, focused on the scientific requirements from cosmology, we will report the design concepts of Japanese lunar telescope project, including the advanced feasibility studies of antenna, receiver, signal chain and spectrometer that are compared as other studies in US, China and Europe. We named this project TSUKUYOMI.
|