Polarimetric differential imaging observations provide the highest contrast images of circumstellar disks in addition to providing information on dust grain scattering properties. The upcoming Nancy Grace Roman Space Telescope Coronagraph is expected to measure the linear polarization fraction of disks greater than 0.3 with an uncertainty of 0.03. One of the critical problems with polarimetric observations is the polarization aberrations generated by the telescope and polarimetric optics, which introduce errors when measuring lower SNR polarized signals. A modeling pipeline was previously developed to simulate the polarization observations of higher SNR debris disks similar without accounting for polarization aberrations. Here, we present the simulated polarimetric disk images of fainter debris disks (∼0.1mJy/arcsec2) through the Roman telescope and the HLC and SPC coronagraphs, incorporating polarization aberrations, jitter, detector, and speckle noise. The Point Response Functions are generated using PROPER for each orthogonal polarization state to account for the polarization aberrations. Finally, we compare the recovered polarization fraction of the debris disk with the input to demonstrate the polarimetric capability of the Roman Coronagraph.
|