Paper
9 November 1978 Remote Monitoring Of Air Pollution By Laser Systems In Airport Environs
C. Ludwig
Author Affiliations +
Abstract
A provision in the Clean Air Act of 1970 requires the States to implement plans for maintaining the air quality on a regional basis and for enforcement of National Ambient Air Quality Standards (NAAQS). Airports must be included in the emission inventory, pollution levels must be monitored, and their impact on air quality assessed. Also, the location of new airports or alteration of existing ones requires the preparation of environmental impact statements. Up to the present time this information was based on mathematical pollution dispersion models and point values obtained from conventional point sampling devices, both of which have inherent difficulties in terms of data acquisition and subsequent interpretation. Remote laser systems offer the potential of overcoming previous difficulties. A comprehensive study was undertaken to determine which laser systems could be most useful in the airport environment. The performance of the different methods was investigated, as they relate to airport monitoring, to determine their capability to measure air pollutants within the requirements of the NAAQS. It was found that of the different laser methods under development, for measuring gaseous pollutants, only the differential absorption by scattering (DAS) and the long-path transmission (LPT) methods appear to be useful, while the Raman scattering and fluorescence methods do not have sufficient sensitivity and, hence, are range limited. The advantages and disadvantages of the DAS and LPT are discussed in detail. A critical performance analysis shows that the DAS method has just enough sensitivity under the constraints of the HEW eye safety regulations to measure the primary pollutants within the levels of the NAAQS up to distances of several hundred meters. In contrast, the LPT method has a greatly improved sensitivity above DAS, but is limited in its three-dimensional application and lacks the ability of range resolution. It was further found that for measuring particles, lidar systems are applicable, provided that a satisfactory relationship between optical parameters and mass density can be established.
© (1978) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
C. Ludwig "Remote Monitoring Of Air Pollution By Laser Systems In Airport Environs", Proc. SPIE 0158, Laser Spectroscopy: Applications and Techniques, (9 November 1978); https://doi.org/10.1117/12.956806
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Signal to noise ratio

Laser systems engineering

Pollution

Absorption

Laser scattering

Air contamination

Scattering

Back to Top