Abstract
Current research has shown that aircraft can gain significant aerodynamic performance benefits from active flow control (AFC). AFC seeks to control large scale flows by exploiting natural response triggered by small energy inputs. The principal target application is download alleviation of the V-22 Osprey under the DARPA sponsored Boeing Active Flow Control System program. One method of injecting energy into the flow over the V22 wings is to use an active vibrating surface on the passive seal between the wing and flapperon. The active surface is an oscillating cantilevered beam which injects fluid into the flow, similar to a synthetic jet, and interacts with the flow field. Two types of actuators, or flipperons, are explored. The first is a multilayer piezoelectric polyvinylidene fluoride cantilevered bender. The second is a single crystal piezoelectric (SCP)d31 poled wafer mounted on a cantilevered spring steel substrate. This paper details the development effort including fabrication, mechanical and electrical testing, and modeling for both types of actuators. Both flipperons were mounted on the passive seal between a 1/10th scale V22 wing and flapperon and the aerodynamic performance evaluated in low speed wind tunnel. The SCP flipperon demonstrated significant cruise benefits, with increase of 10 percent lift and 20 percent angle of attack capability. The PVDF flipperon provided a 16 percent drag reduction in the hover mode.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Frederick T. Calkins and Dan J. Clingman "Vibrating surface actuators for active flow control", Proc. SPIE 4698, Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, (9 July 2002); https://doi.org/10.1117/12.475055
Lens.org Logo
CITATIONS
Cited by 12 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Ferroelectric polymers

Actuators

Crystals

3D modeling

Wind energy

Aerodynamics

Wind measurement

Back to Top