Paper
17 July 2002 Situational awareness for unmanned ground vehicles in semi-structured environments
Author Affiliations +
Abstract
Situational Awareness (SA) is a critical component of effective autonomous vehicles, reducing operator workload and allowing an operator to command multiple vehicles or simultaneously perform other tasks. Our Scene Estimation & Situational Awareness Mapping Engine (SESAME) provides SA for mobile robots in semi-structured scenes, such as parking lots and city streets. SESAME autonomously builds volumetric models for scene analysis. For example, a SES-AME equipped robot can build a low-resolution 3-D model of a row of cars, then approach a specific car and build a high-resolution model from a few stereo snapshots. The model can be used onboard to determine the type of car and locate its license plate, or the model can be segmented out and sent back to an operator who can view it from different viewpoints. As new views of the scene are obtained, the model is updated and changes are tracked (such as cars arriving or departing). Since the robot's position must be accurately known, SESAME also has automated techniques for deter-mining the position and orientation of the camera (and hence, robot) with respect to existing maps. This paper presents an overview of the SESAME architecture and algorithms, including our model generation algorithm.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Thomas G. Goodsell, Magnus Snorrason, and Mark R. Stevens "Situational awareness for unmanned ground vehicles in semi-structured environments", Proc. SPIE 4715, Unmanned Ground Vehicle Technology IV, (17 July 2002); https://doi.org/10.1117/12.474448
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
3D modeling

Cameras

Situational awareness sensors

Reconstruction algorithms

Data modeling

Visual process modeling

Image segmentation

RELATED CONTENT

Reconstruction of indoor scene from a single image
Proceedings of SPIE (March 04 2015)
Three-dimensional model alignment without computing pose
Proceedings of SPIE (April 01 1992)
Robust 3D reconstruction system for human jaw modeling
Proceedings of SPIE (March 08 1999)
3D primitive reconstruction using the line segment
Proceedings of SPIE (March 25 2003)
An Evolving System For Image Understanding
Proceedings of SPIE (July 22 1985)

Back to Top