Additively manufactured electronics (AMEs), also known as printed electronics, are becoming increasingly important for the anticipated Internet of Things (IoT). Current techniques rely on ink-based printing technologies such as inkjet and aerosol jet printers, which highly suffer from contamination, expensive formulation procedures, and limited materials sources, making it challenging to print pure and multimaterial devices. Here, a multimaterial additive nanomanufacturing (M-ANM) technique utilizing directed laser deposition at the nano and microscale is demonstrated, allowing the printing of lateral and vertical hybrid structures and devices. This M-ANM technique involves pulsed laser ablation of solid targets placed on a target carousel inside the printer head for in-situ generation of contamination-free nanoparticles, which are then directed toward the nozzle and laser-sintered in real-time to form desired patterns and structures layer-by-layer. Different materials, such as Ag, Cu, ZnO, TiO2, BTO, Al2O3, etc, are printed in a single-step process. The quality and versatility of our M-ANM technique offer a potential manufacturing option for emerging IoT.
|