Nitride semiconductor-based light emitters (LEDs and laser diodes) are influenced by magnesium (Mg) acceptors, limiting conductivity and operational temperature due to high ionization energy. Mg also causes strong optical absorption, reducing laser diode efficiency. Dielectric polarization engineering using wurtzite nitride lattice symmetry (polarization doping) has been proposed to manipulate electrical properties. Our study demonstrates low threshold current density (2.5 kA/cm2), low internal losses (around 5 cm-1), and good thermal stability in fabricated laser diodes, enabling operation at cryogenic temperatures. Notably, polarization-doped p-layers yield lower voltage than Mg-doped ones. Understanding hole injection from polarization-doped layers remains a challenge.
|