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Nth–order moments, 69, 73

Absorbing inclusions, 422
Absorption
Coefficient, 7, 67–68, 122, 154,
354, 394, 505, 565

Cross-section, 10
Efficiency, 11
Interaction, 3
Mean free path, 22
Perturbation, 538, 580
Properties, 9, 14

Absorption-scattering pathlength
rejection method, 480

Agricultural products, 28
Albedo rejection (AR) method, 477
Albedo weight (AW) method, 479
Anderson localization of light, 20
Angular dependence of radiance, 228
Anisotropic diffusion equation, 138,

145
Anisotropic light propagation, 135
Anisotropic media, 90, 234
Anomalous transport, 20
Asymmetry factor, 8, 113, 497, 521

Background medium, 10, 394
Ballistic
Component, 9
Peak, 340
Photons, 27, 338
Radiation, 248
Time, 154, 522

Beam source, 171
Bessel functions, 187, 201, 204, 299,

342, 352, 444, 614, 636
Biological tissues, 28
Biomedical optics, xxvi
Born approximation, 394, 422
Boundary conditions
Diffusive–diffusive interfaces,
129, 592

Diffusive–non-scattering
interfaces, 124, 589

Boundary conditions for the
diffusion equation, 124

Boundary conditions for the
radiative transfer equation, 51

Closed-form solutions, 422
Comparisons
MC-DE for a homogeneous
medium, 514, 520

MC-DE for four-layered slab,
546

MC-DE for inhomogeneous
media, 538, 542

MC-DE for the Raman signal,
562

MC-DE for two-layered slab, 544
MC-DE mean maximum and
mean average penetration
depth, 534

MC-hybrid models, 549, 551
MC-model for ballistic photons,
555
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Conduction of heat, xxix
Continuity equation, 111, 113
Continuous wave
Domain, 159, 198
Mean pathlength, 180
Source, 40

Cylindrical particles, 29

Decay time for a diffusive slab, 182
Detected power, 68
Detector-free propagation through

a slab, 315
Detector-free propagation through

an infinite medium, 315
Diffuse optical tomography, xxxi
Diffusion
Approximation, 108, 583
Coefficient, 112, 115
Equation, 105, 111
Equation for N-layered media,
373

Equation for layered media, 349
Of electrons and holes, xxix
Of molecules in gases, xxix

Diffusive
Media, 28, 566
Regime, 28, 110, 157, 568

Dirac delta source, 43, 166, 181
Discrete ordinates method, 90, 334

Effective attenuation coefficient,
156

Eigenfunction expansion, 353, 355
Eigenfunction expansion: general

theory, 616
Elastic scattering, 5, 13
Electrical conductivity, xxxiv
Electromagnetic theory of multiple

scattering, 36
Energy density, 38
Extinction coefficient, 8, 63, 502
Extrapolated boundary condition,

124–125

Extrapolated boundary condition
(EBC), 127, 165, 336, 353

Extrapolated boundary partial
current condition (EBPC), 190,
337, 360, 407

Extrapolated distance, 127, 355

Fick’s law, 111, 173, 188, 584
Finite difference method, 90
Finite element method, 90, 334
Fluence rate, 39, 154, 167, 334, 355,

514, 596
Fluorescence, 5, 445, 451
Fluorescence interactions, 451
Flux vector, 40
Fresnel reflection coefficient, 124

Gamma function, 340
Gauss theorem, 128, 397
General property of light re-emitted

by a diffusive medium, 363
Generalized solution, 360
Geometric cross-section, 11
Geometry
Cylinder, 200
Infinite medium, 153
Parallelepiped, 195
Slab, 165
Sphere, 202
Two-layer cylinder, 354

Green’s function
Diffusion equation
Cylinder, 200
Parallelepiped, 195
Reflectance, 173
Slab, 167–168, 173
Sphere, 202
Transmittance, 173

Method, 43
Radiative transfer function
Infinite medium, 339

Telegrapher equation
Infinite medium, 341
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Green’s function of the anisotropic
CW DE for an infinite
homogeneous medium, 604

Green’s function of the DE for a
homogeneous parallelepiped,
619

Green’s function of the DE for an
infinite homogeneous medium,
597

Time-dependent source, 597
Photon flux for a non-absorbing
medium, 603

Steady-state domain, 600
Green’s functions of the diffusion

equation, 153

Helmholtz equation, 353, 356, 622
Henyey and Greenstein model, 473
Heuristic Raman forward solver, 436
Highly scattering materials, 29
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Approach, 190, 336, 407, 558
Solutions, 189, 334, 343

Improved diffusion equation, 159
Independent scattering

approximation, 13, 17
Inelastic scattering, 5
Infinitely extended sources, 213
Initial and boundary value problem,

353
Integral transport methods, 90
Interference effects, 19
Internal pathlength moments, 420
Interstellar medium, 30
Intralipid, 29
Invariance property, 79
Irradiance, 39

Jacobian, 401, 538

Lambert’s cosine law, 232
Lambert–Beer law, 8, 67

Lambertian illumination, 60
Lambertian source, 171
Lambertian surface, 232
Laplace transform, 68
Lateral penetration depth, 303
Legendre polynomials, 203
Light sources, 169

Maxwell’s equations, 36
Mean chord theorem, 77
Mean free path, 19, 22, 158, 517
Mean number of scattering events,

159
Mean pathlength, 157
Mean square displacement, 315, 627
Mean time of flight, 69, 72, 366
Method of images, 165, 336–337,

352
Microscopic Lambert–Beer law

(mLBL), 67, 73
Microscopic Lambert–Beer law

method, 475
Mie theory, 15, 18, 473, 497
Modified Lambert–Beer law,

73–74
Modified reciprocity relation, 360
Moments of distributions of times

of flight of photons, 184
Monte Carlo (MC), 469, 497
Code for a homogeneous and
layered slab, 503

Code for a slab containing an
inhomogeneity, 505

Code for an infinite homogeneous
medium, 502

Method, 474–475, 477, 479–480
Results, 512
Results data base in , 575
Simulations, 232

Near-infrared spectroscopy, xxvi
Neutron transport, xxix
Normalizing factor, 636
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Ohm’s law for light, 206
Optical density, 75
Optical properties
Biological tissue, 28, 131
Statistical meaning, 21
Turbid medium, 7

Optical thickness, 9
Outgoing flux
Comparison between Fick and
EBPC, 558

EBPC, 188, 337, 360, 407
Fick’s law, 338

Padé approximation, 394
Partial current boundary condition

(PCBC), 126, 591
Particle concentration, 14
Path integral method, 90
Pencil beam source, 169
Pencil light beam, 169
Penetration depth, 266, 294, 367,

546
Perturbation
Hybrid models, 418
Layered slab, 420
Monte Carlo, 506
Theory, 394, 422

Phosphorescence, 5
Photon density, 40
Photon packets, 469
Photon trajectories, 470
Power measured, 68
Principle of conservation of energy,

41
Probabilistic interpretation of the

solutions, 46
Probability density function, 21
Probability distribution function,

22, 471
Properties of the diffusion equation,

121
Dependence on absorption, 122
Scaling properties, 121

Properties of the radiative transfer
equation, 62

Dependence on absorption, 67
Invariance property, 79
Mean chord theorem, 77
Reciprocity, 66
Scaling properties, 63

Radial penetration depth, 294
Radiance, 39, 337, 398, 502
Radiative transfer equation (RTE),

36, 41, 334
Raman, 431
Forward solvers, 440, 443
Scattering, 431

Random
Media, 3
Number generator, 500
Walk method, 334
Walk theory, 394

Rayleigh scatterers, 15
Reciprocity principle, 609
Reciprocity relation, 609
Reduced scattering coefficient, 24,

112–113, 154, 361, 566
Reduced scattering efficiency, 25
Reference Monte Carlo results, 575
Reflectance, 173, 338, 360
Robin boundary condition, 126
Russian roulette, 484
Rytov method, 394, 421

Scaling properties, 63
Scaling relationships, 271, 298
Scattering
Coefficient, 7, 13, 504
Cross-section, 13
Efficiency, 14
Interaction, 3
Mean free path, 19
Perturbation, 506, 538
Phase function, 7, 13, 21
Properties, 13
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Second-order moment, 157
Semi-infinite medium, 187
Similarity relation, 24
Single-scattering albedo, 8
Size parameter, 15
Snell’s and Fresnel’s laws, 51
Snell’s law, 234, 594, 596
Software in , 570
Solution
Diffusion equation
Cylinder, 200
Infinite medium, 153
Parallelepiped, 195
Perturbation theory, 394, 422
Slab, 165
Sphere, 202
Two-layer cylinder, 354

Radiative transfer equation
Ballistic radiation, 248
Infinite medium, 339

Telegrapher equation
Infinite medium, 341

Solution for an N-layered cylinder,
376

Solution for anisotropic media,
235

Solution of the DE for a pencil
beam source, 203

Solution of the DE for a semi-
infinite medium, 187

Solution of the DE for time-
resolved fluorescence, 445

Source term, 41, 112, 169, 353, 396
Spatial-frequency domain, 219–220
Specific intensity, 39, 583
Spectral radiance, 38

Spectral specific intensity, 38
Spherical harmonics method, 90,

334
Standard error, 504, 514
Statistical meaning of the optical

properties, 21
Statistical relationships, 315

Telegrapher equation (TE), 341
Temporal frequency domain, 87,

217
Temporal point spread function

(TPSF), 44
Theory of Fourier series, 352
Thermal conductivity, xxxiv
Thermometric conductivity, xxxiv
Time domain, xxix, 195
Time-correlated single-photon

counting, 474
Time-resolved (TR) response, 40
Total mean pathlength, 158
Transformed domains, 87, 123, 217
Transmittance, 173, 338, 360
Transport
Coefficient, 24
Mean free path, 25, 517, 565
Theory, xxviii

Transversal penetration depth, 294
Turbid media, 7

Volume fraction, 14

Weak solution, 360

Zero boundary condition (ZBC),
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