Light Propagation through Biological Tissue and Other Diffusive Media

THEORY, SOLUTIONS, AND VALIDATION

SECOND EDITION

Light Propagation through Biological Tissue and Other Diffusive Media

THEORY, SOLUTIONS, AND VALIDATION

SECOND EDITION

Fabrizio Martelli Tiziano Binzoni Samuele Del Bianco André Liemert Alwin Kienle

SPIE PRESS Bellingham, Washington USA Library of Congress Cataloging-in-Publication Data

Names: Martelli, Fabrizio, 1969- author.

Title: Light propagation through biological tissue and other diffusive media: theory, solutions, and validations / Fabrizio Martelli, Tiziano Binzoni, Samuele Del Bianco, André Liemert and Alwin Kienle.

Description: Second edition. | Bellingham, Washington : SPIE–The International Society for Optical Engineering, [2022] | Revison of: Light propagation through biological tissue and other diffusive media / Fabrizio Martelli ... [et al.]. c2010. | Includes bibliographical references and index.

Identifiers: LCCN 2021058843 | ISBN 9781510650343 (paperback) | ISBN 9781510650350 (pdf)

Subjects: LCSH: Light-Transmission-Mathematical models. | Tissues-Optical properties.

Classification: LCC QC389 .L54 2022 | DDC 535/.3-dc2 3/eng20220406

LC record available at https://lccn.loc.gov/2021058843

Published by SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360.676.3290 Fax: +1 360.647.1445 Email: books@spie.org Web: http://spie.org

Copyright © 2022 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the authors. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America. First printing 2022. For updates to this book, visit http://spie.org and type "PM348" in the search field.

To our families

"We shall not cease from exploration and the end of our exploring will be to arrive where we started and know the place for the first time." *T. S. Eliot*

Contents

Ac	knowl	edgmen	ts	xvii
Dis	sclaim	er		xix
Lis	t of A	cronym	S	xxi
Lis	t of S	ymbols		xxiii
Pre	eface			xxvii
	Refe	rences		XXXV
Pa	rt I Th	neory		1
1	Scat	tering a	nd Absorption Properties of Turbid Media	3
	1.1	Approa	ach Followed in This Manual	3
	1.2	Optical	Properties of a Turbid Medium	7
		1.2.1	The basic definitions	7
		1.2.2	Lambert–Beer law	8
		1.2.3	Absorption properties	9
		1.2.4	Scattering properties	13
		1.2.5	Limitations of the parameter and function definitions	
			presented in this manual	19
		1.2.6	Anomalous light transport	20
	1.3	Statisti	cal Meaning of the Optical Properties of a Turbid Medium	21
		1.3.1	Mean free paths between scattering and absorption events	21
		1.3.2	Photon extinction due to absorption or scattering events	
			along general photons' paths	23
	1.4	Similar	ity Relation and Reduced Scattering Coefficient	24
	1.5	Ballisti	c Photons	27
	1.6	Examp	les of Diffusive Media	28
	1.7	Conclu	ision	30
	Refe	rences		30
2	The	Radiativ	ve Transfer Equation	37
	2.1	Quanti	ties Used to Describe Radiative Transfer	38
	2.2	The Ra	adiative Transfer Equation	41
		2.2.1	RTE for the general case	41
		2.2.2	RTE for a problem with planar symmetry	42

	2.3	The G	reen's Function Method	43
		2.3.1	Time-resolved Green's function	43
		2.3.2	Continuous-wave Green's function	44
		2.3.3	Relation between TR and CW Green's functions	45
	2.4	Probab	ilistic Interpretation of the Solutions	46
		2.4.1	Probability density function for a photon to be detected	47
		2.4.2	Probability density function for a photon to be absorbed	49
		2.4.3	Probability density function to find a photon in the medium	49
	2.5	Bounda	ary Conditions for the RTE	51
		2.5.1	Physical phenomena at the interface of two media with	
			different optical properties	51
		2.5.2	Boundary conditions at the interface of two scattering media	55
		2.5.3	Boundary conditions at the interface between scattering and	
			non-scattering media	58
	2.6	Uniforn	n Lambertian Illumination: A Special Reference Case	60
	2.7	Proper	ties of the Radiative Transfer Equation	62
		2.7.1	Scaling properties	63
		2.7.2	Reciprocity theorem for the CW RTE	66
		2.7.3	Dependence on absorption	67
		2.7.4	Absorbed power: useful equations	77
		2.7.5	Ballistic photons and mean chord theorem	77
		2.7.6	Invariance property of the mean pathlength $\langle L angle$ in	
			scattering media	79
	2.8	The R	TE in Transformed Domains	87
		2.8.1	Temporal frequency domain	87
	2.9	Numer	ical and Analytical Solutions of the RTE	89
	2.10	Anisotr	opic Media and Anomalous Radiative Transport	90
		2.10.1	Anisotropic media	90
		2.10.2	Anomalous radiative transport	91
	2.11	Conclu	sion	94
	Refer	rences		94
3	The I	Diffusio	n Equation for Light Transport	107
	3.1	Diffusio	on Equation and History	107
	3.2	The Di	ffusion Approximation: Physical Assumptions	108
	3.3	Derivat	tion of the Diffusion Equation	111
		3.3.1	Fick's law and diffusion equation	111
		3.3.2	Fick's law in the history	114
	3.4	Diffusio	on Coefficient	115
		3.4.1	Diffusion coefficient compatible with the μ_a -dependence law	
			of the RTE	115
		3.4.2	Diffusion coefficient for the case of $\mu_s' \approx \mu_a$	116
		3.4.3	Theoretically exact diffusion coefficient and the related DE	119

	3.5	Properties of the Diffusion Equation 3.5.1 Scaling properties	121 121
		3.5.2 Dependence on absorption	122
		3.5.3 Reciprocity theorem for the CW DE	122
	3.6	Diffusion Equation in Transformed Domains	123
	3.7	Boundary Conditions	124
		3.7.1 Boundary conditions at the interface between diffusive and non-scattering media	124
		3.7.2 Boundary conditions at the interface between two diffusive media	129
	3.8	Conclusion	131
	Refer	rences	131
4	Anise	otropic Light Propagation	137
	4 1	The CW Anisotropic Diffusion Equation	138
	42	Two Classical Cases	145
		4.2.1 Anisotropic medium with azimuthal symmetry and isotropic	110
		phase function	145
		4.2.2 Isotropic medium: a test case	147
	4.3	Conclusion	148
	Refer	ences	149
Pa	art II Se	olutions	151
5	Solut	ions of the Diffusion Equation for Homogeneous Media	153
Ĩ	5 1	Solution of the Diffusion Equation for an Infinite Medium: Separation	
	0.1	of Variables and Fourier Transform Method	153
	5.2	Improved Solution for the CW Domain: Infinite Medium and Isotropic	
		Scattering	159
	5.3	Solution of the Diffusion Equation for a Slab: Method of Images	165
		5.3.1 The diffusion equation and the choice of light sources	169
		5.3.2 Analytical Green's function for transmittance and reflectance	173
	5.4	Solution of the Diffusion Equation for a Slab: Separation of Variables,	
		Fourier Transform, and Eigenfunction Method	180
	5.5	Moments of the Temporal Point Spread Function for a Slab	184
	5.6	Solution of the Diffusion Equation for a Semi-infinite Medium	187
	5.7	Other Solutions for the Outgoing Flux	188
	5.8	Analytical Green's Function for a Parallelepiped	195
		5.8.1 Time domain	195
		5.8.2 CW domain	198
	5.9	Analytical Green's Function for an Infinite Cylinder	200
	5.10	Analytical Green's Function for a Sphere	202
	5.11	Solution of the Diffusion Equation for a Pencil Beam Source	
		Impinging on a Finite Cylinder Geometry	203
	5.12	Ohm's Law for Light	206

ix

		5.12.1 Isotropic source case		206
		5.12.2 Pencil beam source case		208
	5.13	Solutions for a Slab Illuminated by Infinitely Extended	Sources	213
		5.13.1 Uniform distribution of isotropic sources inside5.13.2 Spatially uniform illumination with sources on the	a slab he external:	213
		surfaces of a slab		215
	5.14	Solutions of the DE in Transformed Domains		217
		5.14.1 Solutions of the DE in the temporal-frequency	domain	217
		5.14.2 Solutions of the DE in the spatial-frequency de	omain	219
		5.14.3 Solution of the DE in the spatial-frequency do	main:	000
	- 4-	Laplace transform approach and semi-infinite i	nedium	220
	5.15	Angular Dependence of Radiance Exiting a Diffusive N	/ledium	228
	5.16	Comment: The Angular Dependence of Reflectance		234
	5.1 <i>1</i>	Anisotropic Media	mothed of	234
		5.17.1 Solution for a stab and a perior beam source.	method of	225
	5 18	Summary Comments on Applications		235
	0.10	5 18 1 Isotronic media		230
		5 18 2 Anisotropic media		239
	5.19	Conclusion		239
	Refe	rences		239
6	Ballis	stic and Quasi-Ballistic Radiation		249
	6.1	Solution of the RTE for Ballistic Radiation		249
		6.1.1 Pencil beam source		250
		6.1.2 Isotropic source		251
	6.2	Heuristic Hybrid Model for Ballistic Photon Detection ir	1 Collimated	
		Transmittance CW Measurements		252
		6.2.1 Preliminary definition of the model		252
		6.2.2 Model in the ballistic regime: small optical thic	kness	255
		6.2.3 Model in the diffusive regime: large optical this	kness	259
		6.2.4 Model for the intermediate regime		260
		6.2.5 Heuristic hybrid model for $d = 0$		261
	6.3	Conclusion		264
	Refe	rences		265
7	Stati	istics of Photon Penetration Depth in Diffusive Media		267
	7.1	Statistics of Photon Penetration Depth inside an Infinit	e Laterally	
		Extended Slab		267
	7.2	Scaling Relationships for the Penetration Depth		271
	7.3	Heuristic Formula for the Mean Average Penetration D	Pepth $\langle \bar{z} angle$ in a	
		Homogeneous Medium		273
	7.4	Solutions for <i>f</i> and $\langle z_{max} \rangle$ for a Slab in the Diffusion A	pproximation	274
	7.5	Heuristic Model for $\langle z_{max} t \rangle$ and $\langle \bar{z} t \rangle$ for a Semi-infinite	Medium	282

	7.6 7.7 7.8	Frequency-Domain Penetration Depth2Summary Comments on Applications2Conclusion2	285 286 287
	Refer	ences 2	288
8	Statis	tics of Transversal Penetration Depth in the TD 2	295
	8.1	Statistics for the Radial Penetration Depth in a Laterally Infinite Slab28.1.1Heuristic relation for the average radial penetration depth28.1.2Scaling relationships for the radial penetration depth28.1.3Calculation of $f(r \rho, t)$ and $\langle r_{max} \rho, t \rangle$ with DE solutions28.1.4Properties of $f(r \rho, t) _{DE}$ and $\langle r_{max} \rho, t \rangle _{DE}$ 38.1.5Heuristic formula for $\langle r_{max} \rho, t \rangle _{DE}$ slab at $\rho = 0$ 3	295 298 298 299 299 300 301
	0.0	 8.1.6 Comparison of the radial versus longitudinal penetration depth in a semi-infinite medium 3 Statistics for the Lateral Penetration Depth in a Laterally Infinitely 	302
	0.2	Statistics for the Lateral Penetration Depth in a Laterally infinitelyExtended Slab38.2.1Heuristic relation for $\langle y \rho, t \rangle _{slab}$ 38.2.2Scaling relationships for the lateral penetration depth38.2.3Formulas with the DE and invariant properties38.2.4Heuristic formula for $\langle y_{max} t \rangle _{DE}$ 3	303 304 305 305 309
	8.3	 Statistics of the Radial Penetration Depth in an Infinite Medium 8.3.1 Heuristic formula for maximum penetration depth in an infinite medium 3 	310 311
	8.4	Comparisons of the Different Formulas for the Maximum	212
	8.5 8.6 Refer	Summary Comments on Applications 3 Conclusion 3 ences 3	312 313 313
9	Avera	ge Photon Distance from Source and Relative Moments 3	817
	9.1	Statistical Relationships: Displacement of Photons from the Source in an Infinite Homogeneous Medium39.1.1Time domain39.1.2CW domain3	317 318 322
	9.2	Penetration Depth for all Photons Propagating in an Infinite Medium39.2.1Mean penetration depth in the TD39.2.2Mean penetration depth in the CW domain3	324 325 328
	9.3	Penetration Depth for all Photons Propagating through a Slab39.3.1Mean penetration depth in the TD39.3.2Mean penetration depth in the CW domain3	328 329 331
	9.4 Refer	Conclusion 3 ences 3	332 333
10	Hybri	d Solutions of the Radiative Transfer Equation 3	335
	10.1	General Hybrid Approach to the Solutions for the Slab Geometry 3	336

	10.2	Analytic	cal Solutions of the Time-Dependent RTE for an Infinite	330
		10.2.1	Almost exact time-resolved Green's function of the RTE for	000
			an infinite medium with isotropic scattering	339
		10.2.2	Heuristic time-resolved Green's function of the RTE for an	244
		1023	Time-resolved Green's function of the telegrapher equation	341
		10.2.0	for an infinite medium	341
	10.3	Compa	rison of the Hybrid Models Based on the RTE and	
		Telegra	pher Equation with the Solution of the Diffusion Equation	343
	10.4 Pofor	Conclu	sion	346
			- Equation for a Two Laward Culinder	3547
11			N Equation for a Two-Layered Cylinder	351
	11.1	Initial a	Inigration infough Layered Media and Boundary Value Problems for Parabolic Equations	353
	11.3	Solution	n of the DE for a Two-Laver Cylinder	354
	11.4	Exampl	les of Reflectance and Transmittance of a Layered Medium	360
	11.5	Genera	I Properties of Light Re-emitted by a Diffusive Medium	363
		11.5.1	Mean time of flight in a generic layer of a homogeneous	
		44 5 0	cylinder	364
		11.5.2	Repetration depth in a two-layer cylinder	360
		11.5.4	Light re-emitted by a diffusive medium: summary	368
	11.6	Summa	ary Comments on Applications	368
	11.7	Conclu	sion	369
	Refer	rences		369
12	The I	Diffusio	n Equation for an <i>N</i> -Layered Cylinder	375
	12.1	Photon	Migration through an N-Layered Cylinder	375
		12.1.1	Solution for an <i>N</i> -layered cylinder in the FD and CW domain	376
		12.1.2	Solution for an N-layered cylinder in the TD via Fourier	200
		1213	Solution for an <i>N</i> -layered cylinder in the TD via Laplace	309
		12.1.0	transform	390
	12.2	Conclu	sion	391
	Refer	ences		392
13	Solut	tions of	the Diffusion Equation with Perturbation Theory	393
	13.1	Perturb	ation Theory in a Diffusive Medium and the Born	
		Approx	imation	394
	13.2	Perturb	ation Theory: Solutions for the Infinite Medium	399
		13.2.1	Examples of perturbation for an infinite medium	400

	13.3	Perturbation Theory: Solutions for the Slab	404
	40.4	13.3.1 Examples of perturbation for a slab	412
	13.4	Perturbation Approach for Hybrid Models	418
	13.5	Perturbation Approach for a Layered Slab and for Other Geometries	420
	13.0	Absorption Perturbation by Using the Internal Pathlength Moments	420
	13.7	Closed-Form CVV Perturbative Solutions of the DE with Absorbing	400
		12.7.1 Porturbation theory to the DE: iterative solutions for the CW	422
		domain	400
	12 0	Summany Commants on Applications	422
	13.0		420
	Rofor		420
			727
14	Time	-Domain Raman and Fluorescence Analytical Solutions	433
	14.1	Theoretical Approach and General Definitions	433
	14.2	Heuristic Model	435
	14.3	Raman Analytical Solutions Based on the Time-Dependent Diffusion	
		Equation	438
		14.3.1 Solution of the DE for the Raman signal in a parallelepiped	440
		14.3.2 Solution of the DE for the Raman signal in a finite cylinder	443
	14.4	Solution of the DE for Time-Resolved Fluorescence in an Infinite	
			445
	445	14.4.1 Theoretical approach and general definitions	445
	14.5	Solution of the DE for a Raman Signal with Background	454
		Fluorescence	451
		14.5.1 Time-resolved reflectance with the EBPC	453
		14.5.2 Improved numerical calculation	404
	116	Fixemples of Paman Polomission Calculated with Paman Forward	404
	14.0	Solvers	456
	14 7	Summary Comments on Applications	459
	14.8	Conclusion	460
	Refer	rences	461
De		Initiation of the Colutions	407
Ра	rt III V	alidation of the Solutions	407
15	Elem	entary Monte Carlo Methods in Turbid Media	469
	15.1	Photon Packets	469
	15.2	Photon Trajectories	470
	15.3	Photon Detection	473
	15.4	Statistical Error in MC Results	474
	15.5	MC Methods for Handling Photon Packet Weight	474
		15.5.1 Microscopic Lambert–Beer law (mLBL) method	475
		15.5.2 Alternative methods to the mLBL method	477

	15.6	Boundary Conditions in MC: Compatibility between Classical and Anomalous Photon Transport	480
	15 7	Interruption of the Propagation of a Photon Packet: Russian Roulette	483
	10.1	15.7.1 Russian roulette applied to the mI RI and AW	484
	15.8	Comparison of the Different Methods	489
	10.0	15.8.1 General features	489
	15 9	Conclusion	494
	Refer	rences	495
16	Refe	rence Monte Carlo Results	499
	16.1	General Remarks	499
	16.2	MC for an Infinite Homogeneous Medium	502
	16.3	MC for a Homogeneous and a Layered Slab	503
	16.4	Monte Carlo Code for a Slab Containing an Inhomogeneity	505
	16.5	Description of the Monte Carlo Program Calculating the Maximum	
		Mean Penetration Depth of Detected Photons	507
	16.6	Description of the Monte Carlo Program Simulating the Raman Signal	
		and the Fluorescence Signal	509
	16.7	Conclusion	511
	Refer	ences	511
17	Com	parisons of Analytical Solutions with Monte Carlo Results	513
	17.1	Introduction	513
	17.2	Comparisons between MC and DE: Homogeneous Medium	514
		17.2.1 Infinite homogeneous medium	514
		17.2.2 Laterally infinite homogeneous slab	520
	17.3	Validation of the DE Solutions for the Mean Maximum and Mean	
		Average Penetration Depth	534
	17.4	Comparison between MC and DE: Homogeneous Slab with an	
		Internal Inhomogeneity	538
	17.5	Comparisons between MC and DE: N-Layered Slab and N-Layered	
		Cylinder	542
		17.5.1 I wo-layered slab	544
	47.0	17.5.2 Four-layered cylinder	546
	17.6	Comparisons between MC and Hybrid Models	549
		17.6.1 Infinite homogeneous medium	549
	477	17.6.2 Slab geometry	551
	17.7	Comparisons between the MC and Heuristic Model for Ballistic	
	17 0	Photon Detection	555
	17.0	Partial Current Approaches	550
	17.0	Failiar Current Apploaches	500
	17.9	vanuation of the DE Solutions for the Rathan Signal	002

	17.10 Conclusions	564
	17.10.1 Infinite medium	565
	17.10.2 Homogeneous slab	565
	17.10.3 Layered slab	566
	17.10.4 Slab with inhomogeneities inside	566
	17.10.5 Finite diffusive media	566
	17.10.6 Diffusion approximation: from a theoretical to a	
	practical world	567
	References	569
18	Numerical Implementations and Reference Database	571
	18.1 Numerical Implementation of the Solutions	571
	18.1.1 MATLAB® functions	571
	18.1.2 Previous FORTRAN codes	575
	18.2 Reference Database: Monte Carlo Simulations	575
	18.2.1 Description of the MC-generated data files	575
	References	580
Pa	rt IV Appendices	581
Δ	Intuitive Justification of the Diffusion Approximation	583
	References	584
D	Eick's Low	595
D		505
	Reference	588
С	Boundary Conditions between Diffusive and Non-Scattering Media	589
D	Boundary Conditions between Two Diffusive Media	593
	References	596
Е	Diffusion Equation with an Infinite Homogeneous Medium: Separation	
	of Variables and Fourier Transform Methods	597
	E.1 Time-Dependent Source	597
	E.2 Steady-State Source	600
	E.3 Time-Dependent Source: Alternative Quick Method	602
	E.4 CW Photon Flux for an Infinite Non-Absorbing Medium	603
	Reference	604
F	Anisotropic CW Diffusion Equation with an Infinite Homogeneous	
	Medium: Separation of Variables and Fourier Transform Methods	605
G	The Reciprocity Principle for a Plane Wave and a Pencil Beam Impinging	
	on a Slab	611
	References	613
н	Temporal Integration of the Time-Dependent Green's Function	615
	References	616

xv

I	The Diffusion Equation: Separation of Variables and Eigenfunction Methods	617
	References	619
J	The Diffusion Equation with a Homogeneous Parallelepiped: Separation	
	of Variables and Eigenfunction Methods	621
	Reference	627
Κ	Mean Square Displacement of the Light Penetration in Turbid Media Based on the RTE	629
	K.1 Elastically Scattered Light without Inelastic Interaction	629
	K.2 Elastically Scattered Light Including Fluorescence or Raman	
	Scattering	633
	References	636
L	Expression for the Normalizing Factor	637
	References	638
М	Finite Integral Transforms	639
	M.1 Finite Hankel Transform of Order <i>n</i> over the Interval [0, a]	639
	M.1.1 Finite Hankel transform of $S(x) = f''(x) + \frac{1}{x}f'(x) - \frac{n^2}{x^2}f(x)$	640
	M.2 Inverse Finite Hankel Transform	641
	M.3 Finite "Shifted" Cosine Transform of a Periodic Function f(y)	641
	M.3.1 Finite "shifted" cosine transform of $f''(y)$	642
	M.4 Inverse Finite "Shifted" Cosine Transform	643
	References	644
Ν	Relationship between the Inverse Fourier Transform and Inverse	
	Laplace Transform	645
	N.1 Inverse Fourier Transform Expressed as an Inverse Laplace	o / F
	I ransform	645
	N.2 Numerical inverse Laplace Transform	640 647
•		047
0	Equivalence of the MC Methods	649
	O.1 Probability of Detecting a Trajectory Γ_m with the AW	649
	0.2 Probability of Detecting a Trajectory Γ_m with the AR	650
	0.3 Probability of Detecting a Trajectory I_m with the ASPR	650 651
	0.4 Probability of Delecting a Trajectory T_m with the ASPR	651
	Reference	652
		002
Inc	lex	653

The supplemental materials for this book are available for download here: http://spie.org/Samples/Pressbook_Supplemental/PM348_sup.zip

xvi

Acknowledgments

This second edition of the book is deeply indebted to Giovanni Zaccanti and Andrea Ismaelli, former coauthors of the first edition. The knowledge inherited from their contribution to the first edition has also supported the work done to achieve the present version. In particular, in the last three years we had a constant exchange of point of views with Giovanni Zaccanti for many chapters of this book. He has inspired our work at many levels, with suggestions, discussions, and observations throughout the development of the new parts of this monograph. He has been also generous with suggestions for the revision of the former chapters. The philosophy of this book is also deeply indebted to his lesson to keep together theories with their analytical and numerical evaluation.

We would like also to thank our numerous colleagues all over the world for their suggestions and stimulating discussions. A special thanks to the colleagues: Antonio Pifferi, Lorenzo Spinelli, Alessandro Torricelli and Andrea Farina from Politecnico di Milano; Angelo Sassaroli from Tufts University; Rosario Esposito from Università di Napoli; Dominik Reitzle from Institut für Lasertechnologien in der Medizin und Meßtechnik an der Universität Ulm, Mike Patterson from Hamilton Regional Cancer Centre, and Danilo Marcucci for his ability to solve complex practical problems.

The authors

A big special thanks to Giovanni Zaccanti, who introduced me to tissue optics, giving me passion and enthusiasm for studying photon migration. All my efforts in this monograph are due to his encouragement to enter this field. Finally, I thank my wife, Silvia, for her continued encouragement and tender love during the completion of this work, and for having the courage to marry me anyway.

Fabrizio Martelli

In memory of François Terrier – with his example, he taught me to take the best from any human being, with humility; and also to firmly defend simple reason in front of the "gurus" in the field.

Tiziano Binzoni

Disclaimer

While the authors have made their best efforts in preparing this book and the related supplemental materials (%), they make no warranties, express or implied, that the formulas of the book, and the software and results contained in %, are free of error, consistent with any standard of merchantability, or will meet the requirements for any particular application. These materials should not be relied upon to solve a problem whose incorrect solution could result in injury to a person or loss of property. Use of the programs in such a manner is at the user's own risk. The authors disclaim all liability for direct or consequential damages resulting from use of the programs.

List of Acronyms

Acronym	Description
CW	Continuous wave
DA	Diffusion approximation
DE	Diffusion equation
DOT	Diffuse optical tomography
EBC	Extrapolated boundary condition
EBPC	Extrapolated boundary partial current
FD	Frequency-domain
FWHM	Full width half maximum
GRTE	Generalized radiative transfer equation
HG	Henyey and Greenstein
MC	Monte Carlo
NIRS	Near infrared spectroscopy
PCBC	Partial current boundary condition
pdf	Probability density function (or probability distribution function)
RR	Russian roulette
RTE	Radiative transfer equation
SAA	Small angle approximation
TCSPC	Time correlated single photon counting
TD	Time-domain
TE	Telegrapher equation
TPSF	Temporal point spread function
TR	Time-resolved
ZBC	Zero boundary condition

List of Symbols

Warning: In a few exceptional cases, a symbol may temporarily acquire a second meaning, different than the one presented in the following tables. However, the context of its utilization eliminates any possible misunderstanding.

Mathematical conventions	
Notation	Description
$d\aleph$	Differential of ℵ
\aleph_G	ℵ is a Green's function
$\langle \aleph angle$	Mean value of ℵ
$\langle \aleph^n \rangle$	n^{th} -order moment of \aleph
м	Small perturbation of ℵ
я̂	ℵ is a unit vector
(x, y, z)	Cartesian coordinates
(ρ, θ, z)	Cylindrical coordinates
(ρ, θ, ψ)	Spherical coordinates

Special symbols Notation	Description
જે	Supplemental materials

Latin-based Notation	Description
a	Radius of the sphere
<i>a</i> ′	Extrapolated radius of the sphere
A	Coefficient for the extrapolated boundary condition
С	Speed of light in vacuum
$\langle d_k^2 \rangle$	Mean square distance from the source after k scattering events
Ε	Energy
V	Volume, domain
\mathcal{P}	Power
D	Diffusion coefficient

(continued)

Latin-based Notation	Description
E_2, E_3, E_4	Coefficients for the boundary condition between two diffusive media
$f_1(\theta), f_2(\varphi), f_3(z)$	Probability distribution functions for the photon's scattering
${\mathcal F}$	Fourier transform
F	Cumulative probability function
$F(\theta_e)$	Angular dependence of the outgoing radiance
g	Asymmetry factor
G	Green's function
h	Planck's constant
\mathcal{H}	Hankel transform
Ι	Radiance or specific intensity
I_n	Modified Bessel function of order n
\vec{J}	Flux vector
J_n	Bessel functions of order n
K_n	Modified Bessel function of order n
$\langle k \rangle$	Mean number of scattering events undergone by photons
\mathcal{L}	Laplace transform
l _{max}	Maximum length of a photon trajectory
$\ell_s = 1/\mu_s$	Scattering mean free path
$\ell_a = 1/\mu_a$	Absorption mean free path
$\ell_t = 1/\mu_t$	Extinction mean free path
$\ell' = 1/\mu'_s$	Transport mean free path
$\langle l \rangle$	Mean pathlength of photons
$\langle l_R \rangle$	Mean pathlength for the total reflectance
$\langle l_T \rangle$	Mean pathlength for the total transmittance
L_x, L_y, L_z	Dimensions for the parallelepiped
L	Radius of the cylinder
L'	Extrapolated radius of the cylinder
n	Refractive index
n _i	Refractive index of the diffusive medium
n _e	Refractive index of the external medium
<i>n_r</i>	Relative refractive index
N	Particle concentration
N _{ln}	Normalizing factor for the two-layer cylinder solution
$p(\theta)$	Scattering phase function (also called phase function)
p(z)	Penetration depth of photons
Р	Impinging power of a light beam or detected power
P_n	Legendre polynomials
$Q_a = C_a/C_g$	Absorption efficiency
$Q_s = C_s/C_g$	Scattering efficiency

(continued)

Latin-based Notation	Description
$Q'_s = Q_s(1-g)$	Reduced scattering efficiency
r	Radius of particles
ř	Position of the receiver
\vec{r}_0	Position of the source
\vec{r}_2	Position of the inhomogeneity
\vec{r}_3	Position of the detector
\vec{r}_m^+, \vec{r}_m^-	Sources positions with the method of images for the slab
\vec{r}_s	Position vector (x_s, y_s, z_s) of the real source
\vec{r}'	Position of the source
R	Reflectance
R_F	Fresnel reflection coefficient for unpolarized light
S	Thickness of the slab
ŝ	Direction of observation of radiance
S ^{virt}	Virtual source term
t	Current observation time
ť	Emission time of the source
$\langle t \rangle$	Mean time of flight of photons
$\langle t^n \rangle$	<i>n</i> th -order moment
t_0	Time of flight for ballistic photons
$\langle t_i \rangle$	Mean time of flight spent inside a layer i
Т	Transmittance
и	Energy density
v	Speed of light inside the medium
Wmp	Contribution to the TPSF of the m^{th} trajectory
$x = 2\pi r/\lambda$	Size parameter
$\langle x_k \rangle, \langle y_k \rangle, \langle z_k \rangle$	Mean photon's coordinates after k scattering events
$Z_e = 2AD$	Extrapolated distance
$Z_{\rm max}$	Maximum penetration depth
$Z_{\max,i}$	Maximum penetration depth of the trajectory i
\bar{z}_{\max}	Average penetration depth
$\bar{z}_{\max,i}$	Average penetration depth of the trajectory i
<i>z</i> ₀	Light source position at depth $1/\mu'_s$ along the z axis.
Z _S	Light source position along the z axis
Greek-based Notation	Description

(otation	
α	Angular range of the field of view of the receiver
β_m	Positive roots of the equation $J_m(\beta_m L') = 0$
Г	Gamma function

(continued)

Greek-based Notation	Description
$\delta\Phi=\Phi^{pert}-\Phi^0$	Perturbation for the fluence rate
$\delta \Phi^a$	Absorption perturbation for the fluence rate
$\delta \Phi^D$	Scattering perturbation for the fluence rate
δR^a	Absorption perturbation for the reflectance
δR^D	Scattering perturbation for the reflectance
δT^{a}	Absorption perturbation for the transmittance
δT^D	Scattering perturbation for the transmittance
∂V	External physical boundary of a domain V
e	Infinitesimal real value
ε	Source term of the radiative transfer equation
ϵ_0	Source term of the diffusion equation
θ	Polar angle
$\Theta(x)$	Step function (0 for $x < 0$ and 1 for $x \ge 0$)
λ	Wavelength
Λ	Single-scattering albedo
λ_n	Eigenvalues
$\mu = \cos \left(\theta \right)$	Cosine of the scattering angle θ
μ_a	Absorption coefficient
μ_s	Scattering coefficient
$\mu_t = \mu_a + \mu_s$	Extinction coefficient
$\mu_s' = \mu_s(1-g)$	Reduced scattering coefficient
μ_{eff}	Effective attenuation coefficient
ξn	Eigenfunctions
ρ	Distance of the receiver from the pencil light beam
ρ_{ν}	Volume fraction of particles
σ	Standard deviation
$\bar{\sigma}$	Standard error
σ_a	Absorption cross-section
σ_s	Scattering cross-section
σ_g	Geometrical cross-section
Σ	Area, surface
Σ	Cross-section of the light beam
τ	Optical thickness or decay time
φ	Azimuthal angle
Φ	Fluence rate
$\Phi^{\rm u}$	Unperturbed fluence rate
Φ^{pert}	Perturbed fluence rate
Ω	Solid angle
Ω_d	Acceptance solid angle of the detection system

Preface

HIS manual is intended as an in-depth introduction to light propagation through biological tissues and diffusive media. After having treated the general theory of light diffusion and its physical and biological interpretation, the text presents the derivation of tens of already reported and newly derived analytical and/or semi-analytical solutions. These solutions are "ready to use" and represent the most employed algorithms appearing in tissue optics and related fields, where light is used to probe the optical and/or biological properties of diffusive media. By studying these examples, the readers should be able to directly apply the solutions to real laboratory problems or to develop their own specific solutions.

In a dedicated part of the manual, the solutions are tested against "gold standard" reference data, and their domain of validity is carefully discussed. This part also serves as a tutorial explaining how to generate suitable reference data and how to test new algorithms obtained, e.g., by the reader.

The text is particularly well suited for skilled master students but also for advanced scientists searching for rapid solutions, eliminating the problem of repeating cumbersome calculations in diffusive optics, and bypassing the need to search among hundreds of published papers.

Thus, to summarize, the present manual offers: I) A general introduction to the theory of photon migration; II) Ready-to-use analytical and/or semianalytical solutions, derived from the general theory of photon migration, associated with problems typically encountered in biomedical optics and related domains; III) A validation of the proposed solutions by means of comparisons with Monte Carlo (MC) simulations; IV) A tutorial software package, implementing the most representative analytical and semi-analytical solutions of the manual (see supplemental material) and V) A set of precalculated MC data serving as a gold-standard reference and allowing the reader to personally check the presented exact/approximated solutions (see).

New to this edition

The manual is a completely revised version of the former published book titled *Light Propagation through Biological Tissue and other Diffusive Media: Theory, Solutions and Software.*¹ The new text wants to get closer to the

novelties of the theoretical modeling in photon transport that have appeared in recent years, thus putting the reader in the ideal conditions to comprehend the recent evolution of the theoretical modeling techniques. For this reason, together with an in-depth revision and expansion of the old chapters, eight new chapters have been included, covering new solutions and new aspects of the theory.

Theoretical Background

A simplifying hypothesis

The theoretical background of this book is the general theory of photon transport. The propagation of light through turbid media (i.e., media with scattering and absorption properties) can be accurately described in the mesoscopic and macroscopic scales with the radiative transfer equation (RTE). The RTE is a complex integro-differential equation of which analytical solutions are available for some geometries of practical interest.² Such solutions usually suffer from longer computation times and higher complexity compared to the solutions of other approximated theories such as the diffusion equation (DE). The DE is obtained from the RTE by making some simplifying assumptions. Compared to the solutions obtained with the RTE, the solutions derived from the DE, for the same problem, are certainly more efficient but may be approximated. For this reason, for each application in which the DE solutions are used, it is necessary to check their accuracy to ensure that the approximations are sufficiently small. This check can be performed by comparing the approximate solutions against the correspondent reference solutions obtained with the RTE (usually solved by the "gold standard" MC methods).

Why then the diffusion equation?

At this point, the obvious question remains: why to adopt the DE instead of an exact RTE? Diffusive media are turbid media for which the solutions of the DE provide a sufficiently accurate description of light propagation. Through these media, photons propagate in a diffusive regime. In fact, the paths followed by these photons, migrating, e.g., from a source to a detector, look like a random walk (zigzag trajectory). Thus, when these photons undergo a sufficiently high number of scattering events (generating the zigzag trajectory), we obtain a diffusive regime. The important point here is that in daily life we can find a long list of media for which a diffusive regime of propagation can be assumed. This list includes, for example, highly scattering media such as biological tissues, agricultural products, wood, paper, plastic materials, sugar, salt, and milk, for which the diffusive regime can be reached even when the volume of the medium is smaller than a cubic centimeter. The list can also include slightly scattering media, such as clouds of gas and dust in the interstellar medium; in these cases, an extremely large volume is necessary to obtain the diffusive regime. This book is devoted to the study of light propagation through scattering media with a special emphasis on biological tissues and diffusive media. This is the reason why the DE becomes of fundamental interest. Moreover, the diffusive regime of light propagation is a reference and limit regime under which forward solvers can be obtained with extraordinary simplified characteristics. We will see that the above described limits of the DE actually represent its main advantages, which can be fruitfully used in applied science.

Why present solutions in the time domain?

In our study we have given special emphasis to studying light propagation in the time domain,³ i.e., providing solutions of the DE for a temporal Dirac delta source, and this fact requires a comment. This choice is motivated by the fact that this domain of analysis is widely spread in many applications where short-pulsed laser sources are used. However, the literature includes commonly used solutions in other transformed domains such as the temporal-frequency and spatial-frequency Fourier domains^{4,5} where temporal and spatial modulated sources are used. It is important to note that solutions in other transformed domains, such as the temporal-frequency domains, can be fully reconstructed by making use of the solutions in the time domain and in the continuous wave (CW) domain³ (a "special" case of the time domain where a continuously emitting source is used).⁵ Thus, the solutions presented in this book can, in principle, cover all the domains of analysis.

For the time domain, it is also finally important to note that it has, in principle, the maximum information content since absorption and scattering effects can be more easily decoupled while studying the RTE in this domain. Indeed, when looking at measurable time-domain quantities, such as timeresolved detected light, the absorption and scattering terms can be identified as affecting very different and independent parts of the measured temporal profile. In fact, absorption interactions are progressively affecting late times, while scattering strongly affects the early part of the detected signal. This fact can lead to an evident advantage in terms of understanding the different physical phenomena and the measurement techniques of the optical properties. For this reason, the time domain represents a primary regime for studying and understanding photon transport. However, the time domain and CW domain can be extremely accurate in measuring the optical properties of diffusive media, showing that through designed experiments absorption and scattering can be decoupled also in the CW domain.^{6,7} In this book, the time domain (including the special CW case) is the background for studying photon transport. In any case, for tutorial purposes, in this manual few examples of solutions will be discussed in the other domains.

Note that the expressions "time (temporal) domain" and "CW domain," utilized for simplicity in this manual, in general should be more precisely written with the longer expressions "spatial time (temporal) domain" and "spatial CW domain."

Using this manual in everyday practice

Solutions of photon transport can find a natural use in the assessment of the optical properties (absorption and scattering) of scattering media. In fact, these measurements often need, in the inversion procedure, a forward model that describes the dependence of the detected light on the values of the optical properties. Moreover, in the biological domain, the optical properties may in turn be linked to biological quantities important for the understanding of related underlying physiological mechanisms (see Fig. 1). The latter biological application is made possible by the fact that near-infrared light (typical light utilized for biological measurement) can penetrate deeply into tissues (some centimeters) and is sensitive to several tissue constituents.

More specifically, any biological tissue represents a complex random medium wherein light undergoes many scattering events and where, in many practical cases, its propagation may be suitably described as a diffusion process. The interaction of the near-infrared light with a biological tissue is dominated, with few exceptions, by scattering effects (the distance between two subsequent scattering events is on the order of $\approx 100 \ \mu\text{m}$). However, most of the physiological information is led by the absorption of chromophores (e.g., oxy- or deoxy-hemoglobin) naturally present in the tissues. The

Figure 1 General approach allowing one to extract biological quantities from light that has traveled through a tissue.

possibility to treat this problem as a diffusion process, allows us to assess the small contribution of the absorption by isolating it in a very efficient manner from scattering. It is in this sense that the DE solutions proposed in this manual may represent a very powerful tool for the physiologist, the medical doctor or the engineer involved in the development of new instrumentation for biomedical optics.^{3,8,9} These reasons are also why the solutions reported in this manual are already at the core of well-known instrumentation, such as near-infrared spectroscopy (NIRS) and diffuse optical tomography (DOT).^{10,11}

Organization of the Manual

The text is organized in three main parts: I) General theory of photon migration; II) Analytic and semi-analytic solutions; and III) Validation of the solutions.

Part I

Part I introduces the whole book and describes the theories that will be used. This part ranges from Ch. 1 to Ch. 4.

- In Ch. 1, the general concepts and the physical quantities necessary to describe light propagation through absorbing and scattering media are introduced.
- In Ch. 2, the RTE and its main properties are described and discussed.
- In Ch. 3, the DE is derived starting from the RTE, and the reader is introduced to the general properties of the DE.
- In Ch. 4, the classic anisotropic diffusion equation (ADE) is derived from the anisotropic generalized RTE.

Part II

In part II, specific analytical and semi-analytical solutions derived from the theories presented in part I are carefully described. This part ranges from Ch. 5 to Ch. 14.

- Chapter 5 is devoted to solutions of the DE for homogeneous media.
- Chapter 6 is dedicated to ballistic and quasi-ballistic radiation and to a heuristic solution designed to model the effect of scattering in ballistic photon detection.
- Chapter 7 provides a general introduction to the calculation of the penetration depth in scattering media delivering analytical solutions for a diffusive slab.
- Chapter 8 focuses on the radial and lateral penetration depth in a homogeneous slab.

- Chapter 9 analyzes the detector-free propagation of light through a scattering and absorbing medium.
- Chapter 10 represents a special topic: hybrid solutions for a homogeneous slab, based on solutions of the RTE and the telegrapher equation.
- In Ch. 11, a solution of the DE for a two-layer medium is described.
- In Ch. 12, solutions for *N*-layered media are presented.
- In Ch. 13, solutions of the perturbed DE, when small defects are introduced into the medium, are obtained with the Born approximation.
- In Ch. 14, time-domain DE solutions for the Raman and the fluorescence signals are presented.

Part III

In part III, the obtained solutions are validated by means of comparisons with the results of reference MC simulations. This part ranges from Ch. 15 to Ch. 18.

- In Ch. 15, elementary MC methods typically utilized to describe photon migration in biomedical optics and, in general, in turbid media are presented.
- In Ch. 16, the different MC codes implemented to generate the reference data utilized to test the analytical and semi-analytical solutions proposed in this manual are carefully described in detail.
- Chapter 17 is dedicated to the validation of the solutions presented in part II. The validations are done by means of comparisons with the MC reference data of Ch. 16, and the results of the comparisons are described and discussed.
- In Ch. 18, the software included in % is described (MATLAB functions). The collection of MATLAB functions estimates almost all the solutions of photon transport presented in the manual. A large set of reference MC data (Excel *.xlsx format), which can be used as a standard reference, is also included in %. Note that the old software named *Diffusion&Perturbation* together with the FORTRAN codes of the solutions of Ref. 1 can always be found in %.

Beyond Photon Migration and Biomedical Optics

It is worthwhile at this point to conclude this preface by recalling that diffusive processes can be placed in a more general context that goes beyond biomedical optics. This fact may be better appreciated by noting that mathematical equations are in a way quite similar to words; i.e., they acquire their real meaning only when immersed in a precise context. This appears to

xxxiii

be also the case for the DE. In fact, many media (agricultural products, wood, food, plastic materials, paper, pharmaceutical products, etc.) have optical properties at visible and/or near-infrared wavelengths for which light propagation in the diffusive regime can be established. Therefore, the same techniques used to study biological tissues can be applied to the monitoring of industrial processes, for quality control,^{12–17} or in completely different fields.

Indeed, the theories presented in this manual, i.e., the RTE and the DE, arise from the more general transport theory.^{18,19} Transport theory concerns the transport of "particles" through a "background medium" and is used in several applications where the transported particles and the host medium can have a very different nature and be represented by very different physical quantities. Thus, in general, the transport equation takes its sense depending on the physical phenomenon we want to describe. The advent of personal computers has made several numerical methods affordable to solve transport theory, and the availability of numerical solutions has further encouraged the use of this theory to solve a panoply of practical problems. The list of applications is surprisingly long and eclectic. Duderstadt and Martin¹⁹ summarized for us some of the most relevant applications of transport theory:

Neutron transport in nuclear reactors, Shielding of radioactive sources, Penetration of X-ray through matter, Brownian motion, Sound propagation, Propagation of light through the atmosphere, Propagation of light through stellar matter, Gas dynamics, Plasma dynamics, Transport of natural aerosols in the atmosphere, Diffusion of molecules in gases and fluids, Multiple scattering of electrons, Diffusion of holes and electrons in semiconductors, Photon transport through biological tissues, Transport of particles air pollution, Traffic flow, etc.

Thus, despite the different kinds of particles (neutrons, gas molecules, atoms of plasma, electrons, photons) or quantities that may be involved in the transport processes, all of these phenomena can be studied and described by using the same basic equation. When the transport process becomes diffusive, the transport equation can be simplified through the DE. Given a physical quantity *u* representative of the physical process studied (for instance, the particle density), whenever u is described by the equation

$$\frac{\partial}{\partial t}u(\vec{r},t) - k_1 \nabla^2 u(\vec{r},t) + k_2 u(\vec{r},t) = 0, \qquad (1)$$

we are dealing with a diffusive process. The coefficient k_1 is related to the spatial and temporal scale of the diffusive phenomenon studied, and the coefficient k_2 is related to the probability that the transported particles will be absorbed.

For example, for radiative transfer processes, k_1 will be related to the transport coefficient or diffusion coefficient of photons through the medium. For neutron transport processes, k_1 will be related to the transport coefficient of neutrons through the medium. For the diffusion of electrons and holes in semiconductors, k_1 will be related to the electrical conductivity. For the diffusion of molecules in gases, k_1 will be related to the transport coefficient of the molecules through the gas. The above equation with $k_2 = 0$ can be also used to describe the conduction of heat in solid isotropic materials, where u will be the temperature of the medium, and k_1 will be the thermometric conductivity of the substance, i.e., a material-specific quantity depending on the thermal conductivity, the density, and the specific heat of the substance.²⁰ The same equation is thus associated with very different physical concepts.

Usually, a diffusion process is associated with the random movement of a certain kind of particles. However, in some situations this is not so evident, as in the case of the physical diffusion of heat or the diffusion of fluids through porous materials.²¹ This fact manifests the dichotomous nature of the diffusion process.²¹ The dichotomous nature of diffusion theory has been noted by Narasimhan,²¹ who showed how the equations of physical diffusion, i.e., Fourier theory of heat conduction,²² and stochastic diffusion, derived from the Laplace theory of probability,²³ arose. Later, Albert Einstein obtained a single molecular-kinetic heat theory^{24,25} wherein the equivalence between the diffusion coefficient of the physical process and of the random event was used. In physics, the work of Fourier inspired the use of the diffusion equation to study electricity phenomena, diffusion of molecules, and fluid flow.²¹ The probability theory of Laplace inspired, at the end of the nineteenth century, scientists, economists, and statisticians to formulate a stochastic diffusion equation wherein the concept of probability density was used.²¹ Given the high number of diffusion processes that can be observed in natural phenomena, we can view diffusion as a multi-fold theory that can assume very different physical meanings depending on the nature of the processes.

The above few examples and comments clearly show us that with the same mathematical tool different physical processes can be studied; however, given the intrinsic differences between the physical processes involved, each one requires a different physical interpretation of Eq. (1). These considerations want to emphasize that the solutions presented in this manual may have a quite larger field of use than that of tissue optics. Indeed, it is a characteristic of nature to show sometimes similar physical laws when processes involve different physical quantities.

We finally point out that the theories and solutions presented in this book have been obtained with reference to media illuminated by unpolarized light. However, the solutions are also applicable to media illuminated by polarized light, which commonly occurs when laser sources are used. In fact, multiple scattering randomly changes the polarization of scattered light so that light detected after a sufficiently large number of scattering events is completely depolarized. The previous state of polarization only remains near the source where photons arrive after a small number of scattering events. It has been shown with numerical simulations^{26,27} and experiments²⁷ that when propagation occurs in the diffusive regime (i.e., when the solutions presented in this book become applicable), received photons have lost almost all traces of the initial state of polarization, and the results for polarized light become almost identical to those obtained for unpolarized light.

Thousands of papers on the diffusion of light have been published in scientific journals. For this reason, the references presented in this manual cannot *a fortiori* be exhaustive. Thus, we will mention only a few good introductory references, such as the monograph dedicated to the diffusion of light by Ripoll.⁴ This reference, mainly refers to publications in the field of biomedical optics and more precisely to the field of NIRS and diffuse optical tomography. In order to have a more complete view of photon transport, we also suggest the reader to refer to other books on light propagation.^{18,19,28–33}

References

- [1] F. Martelli, S. D. Bianco, A. Ismaelli, and G. Zaccanti, *Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software.* SPIE Press, Bellingham, 2009.
- [2] A. Liemert, D. Reitzle, and A. Kienle, "Analytical solutions of the radiative transport equation for turbid and fluorescent layered media," *Sci. Rep.*, vol. 7, p. 3819, 2017.
- [3] L. V. Wang and H. Wu, *Biomedical Optics, Principles and Imaging*. John Wiley and Sons, New York, 2007.
- [4] J. Ripoll, *Principles of Diffuse Light Propagation*. World Scientific, Cambridge, 2012.
- [5] S. Gioux, A. Mazhar, and D. J. Cuccia, "Spatial frequency domain imaging in 2019: Principles, applications, and perspectives," *J. Biomed. Opt.*, vol. 24, p. 071613, 2019.
- [6] L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. D. Ninni, F. Martelli, and G. Zaccanti, "Determination of reference values for optical properties of liquid phantoms based on intralipid and india ink," *Biomed. Opt. Express*, vol. 5, pp. 2037–2053, 2014.

- [7] F. Foschum, F. Bergmann, and A. Kienle, "Precise determination of the optical properties of turbid media using an optimized integrating sphere and advanced Monte Carlo simulations. Part 1: theory," *Appl. Opt.*, vol. 59, pp. 3203–3215, 2020.
- [8] V. Tuchin, Tissue Optics. SPIE Press, Bellingham, WA, 2000.
- [9] I. Bigio and S. Fantini, *Quantitative Biomedical Optics: Theory, Methods, and Applications, Cambridge Texts in Biomedical Engineering.* Cambridge University Press, 2016.
- [10] Y. Yamada, H. Suzuki, and Y. Yamashita, "Time-domain near-infrared spectroscopy and imaging: A review," *Appl. Sci.*, vol. 9, p. 1127, 2019.
- [11] Y. Yamada and S. Okawa, "Diffuse optical tomography: Present status and its future," *Opt. Rev.*, vol. 21, pp. 185–205, 2014.
- [12] P. Tatzer, M. Wolf, and T. Panner, "Industrial application for inline material sorting using hyperspectral imaging in the NIR range," *Real-Time Imaging*, vol. 11, pp. 99–107, 2005.
- [13] M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, and C. de-la Pezuela, "Near-infrared spectroscopy in the pharmaceutical industry," *Analyst*, vol. 123, pp. 135R–150R, 1998.
- [14] Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, and N. Jent, "A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies," *J. Pharm. Biomed. Anal.*, vol. 44, pp. 683– 700, 2007.
- [15] G. Reich, "Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications," *Appl. Opt.*, vol. 57, pp. 1109–1143, 2005.
- [16] M. C. Cruz and J. A. Lopes, "Quality control of pharmaceuticals with NIR: from lab to process line," *Vib. Spectrosc.*, vol. 49, pp. 204–210, 2009.
- [17] M. Zude, Optical Monitoring of Fresh and Processed Agricultural Crops, (Contemporary Food Engineering Series). CRC Press, Boca Raton, Florida, 2009.
- [18] K. M. Case and P. F. Zweifel, *Linear Transport Theory*. Addison-Wesley Publishing Company, Massachusetts, Palo Alto, London, 1967.
- [19] J. J. Duderstadt and W. R. Martin, *Transport Theory*. John Wiley and Sons, New York, 1979.
- [20] H. S. Carslaw and J. C. Jaeger, *Conduction of Heat in Solids*. Oxford University Press, Ely House, London, 1959.
- [21] T. N. Narasimhan, "The dicothomous hystory of diffusion," *Physics Today*, vol. 62, pp. 48–53, 2009.
- [22] J. B. J. Fourier, Théorie Analytique de la Chaleur. Didot Paris, 1822.
- [23] P. S. Laplace, *Théorie Analytique des Probabilitiés*. Ve Courcier Paris, 1812.
- [24] A. Einstein, "Investigations on the theory of the Brownian movement," R. Fürth, ed., A. D. Cowper, trans., Methuen, London 1926, 1926.

- [25] A. Einstein, *Investigations on the Theory of the Brownian Movement*. Dover Publications, Inc., 1956.
- [26] P. Bruscaglioni, G. Zaccanti, and Q. Wei, "Transmission of a pulsed polarized light beam through thick turbid media: numerical results," *Appl. Opt.*, vol. 32, pp. 6142–6150, 1993.
- [27] J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, "Use of polarized light to discriminate short-path photons in a multiply scattering medium," *Appl. Opt.*, vol. 31, pp. 6535–6546, 1992.
- [28] H. C. van de Hulst, *Light Scattering by Small Particles*. John Wiley and Sons, New York, 1957.
- [29] S. Chandrasekhar, *Radiative Transfer*. Oxford University Press, London/ Dover, New York, 1960.
- [30] A. Ishimaru, *Wave Propagation and Scattering in Random Media*, vol. 1. Academic Press, New York, 1978.
- [31] A. Ishimaru, *Wave Propagation and Scattering in Random Media*, vol. 2. Academic Press, New York, 1978.
- [32] E. Akkermans and G. Montambaux, *Mesoscopic Physics of Electrons* and Photons, Cambridge University Press, Cambridge, 2007.
- [33] R. Carminati and J. C. Schotland, *Principles of Scattering and Transport* of Light, Cambridge University Press, Cambridge, 2021.