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To our families

“We shall not cease from exploration and the end of our exploring will be to
arrive where we started and know the place for the first time.”

T. S. Eliot
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Preface

T
HIS manual is intended as an in-depth introduction to light
propagation through biological tissues and diffusive media. After
having treated the general theory of light diffusion and its physical and

biological interpretation, the text presents the derivation of tens of already
reported and newly derived analytical and/or semi-analytical solutions. These
solutions are “ready to use” and represent the most employed algorithms
appearing in tissue optics and related fields, where light is used to probe the
optical and/or biological properties of diffusive media. By studying these
examples, the readers should be able to directly apply the solutions to real
laboratory problems or to develop their own specific solutions.

In a dedicated part of the manual, the solutions are tested against “gold
standard” reference data, and their domain of validity is carefully discussed.
This part also serves as a tutorial explaining how to generate suitable reference
data and how to test new algorithms obtained, e.g., by the reader.

The text is particularly well suited for skilled master students but also for
advanced scientists searching for rapid solutions, eliminating the problem of
repeating cumbersome calculations in diffusive optics, and bypassing the need
to search among hundreds of published papers.

Thus, to summarize, the present manual offers: I) A general introduction
to the theory of photon migration; II) Ready-to-use analytical and/or semi-
analytical solutions, derived from the general theory of photon migration,
associated with problems typically encountered in biomedical optics and
related domains; III) A validation of the proposed solutions by means of
comparisons with Monte Carlo (MC) simulations; IV) A tutorial software
package, implementing the most representative analytical and semi-analytical
solutions of the manual (see supplemental material ) and V) A set of pre-
calculated MC data serving as a gold-standard reference and allowing the
reader to personally check the presented exact/approximated solutions (see ).

New to this edition

The manual is a completely revised version of the former published book
titled Light Propagation through Biological Tissue and other Diffusive Media:
Theory, Solutions and Software.1 The new text wants to get closer to the
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novelties of the theoretical modeling in photon transport that have appeared
in recent years, thus putting the reader in the ideal conditions to comprehend
the recent evolution of the theoretical modeling techniques. For this reason,
together with an in-depth revision and expansion of the old chapters, eight
new chapters have been included, covering new solutions and new aspects of
the theory.

Theoretical Background

A simplifying hypothesis

The theoretical background of this book is the general theory of photon
transport. The propagation of light through turbid media (i.e., media with
scattering and absorption properties) can be accurately described in the
mesoscopic and macroscopic scales with the radiative transfer equation
(RTE). The RTE is a complex integro-differential equation of which
analytical solutions are available for some geometries of practical interest.2

Such solutions usually suffer from longer computation times and higher
complexity compared to the solutions of other approximated theories such as
the diffusion equation (DE). The DE is obtained from the RTE by making
some simplifying assumptions. Compared to the solutions obtained with the
RTE, the solutions derived from the DE, for the same problem, are certainly
more efficient but may be approximated. For this reason, for each application
in which the DE solutions are used, it is necessary to check their accuracy to
ensure that the approximations are sufficiently small. This check can be
performed by comparing the approximate solutions against the correspondent
reference solutions obtained with the RTE (usually solved by the “gold
standard” MC methods).

Why then the diffusion equation?

At this point, the obvious question remains: why to adopt the DE instead of
an exact RTE? Diffusive media are turbid media for which the solutions of the
DE provide a sufficiently accurate description of light propagation. Through
these media, photons propagate in a diffusive regime. In fact, the paths
followed by these photons, migrating, e.g., from a source to a detector, look
like a random walk (zigzag trajectory). Thus, when these photons undergo a
sufficiently high number of scattering events (generating the zigzag
trajectory), we obtain a diffusive regime. The important point here is that
in daily life we can find a long list of media for which a diffusive regime of
propagation can be assumed. This list includes, for example, highly scattering
media such as biological tissues, agricultural products, wood, paper, plastic
materials, sugar, salt, and milk, for which the diffusive regime can be reached
even when the volume of the medium is smaller than a cubic centimeter. The
list can also include slightly scattering media, such as clouds of gas and dust in
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the interstellar medium; in these cases, an extremely large volume is necessary
to obtain the diffusive regime. This book is devoted to the study of light
propagation through scattering media with a special emphasis on biological
tissues and diffusive media. This is the reason why the DE becomes of
fundamental interest. Moreover, the diffusive regime of light propagation is a
reference and limit regime under which forward solvers can be obtained with
extraordinary simplified characteristics. We will see that the above described
limits of the DE actually represent its main advantages, which can be
fruitfully used in applied science.

Why present solutions in the time domain?

In our study we have given special emphasis to studying light propagation in
the time domain,3 i.e., providing solutions of the DE for a temporal Dirac
delta source, and this fact requires a comment. This choice is motivated by the
fact that this domain of analysis is widely spread in many applications where
short-pulsed laser sources are used. However, the literature includes
commonly used solutions in other transformed domains such as the
temporal-frequency and spatial-frequency Fourier domains4,5 where temporal
and spatial modulated sources are used. It is important to note that solutions
in other transformed domains, such as the temporal-frequency and spatial-
frequency domains, can be fully reconstructed by making use of the solutions
in the time domain and in the continuous wave (CW) domain3 (a “special”
case of the time domain where a continuously emitting source is used).5 Thus,
the solutions presented in this book can, in principle, cover all the domains of
analysis.

For the time domain, it is also finally important to note that it has, in
principle, the maximum information content since absorption and scattering
effects can be more easily decoupled while studying the RTE in this domain.
Indeed, when looking at measurable time-domain quantities, such as time-
resolved detected light, the absorption and scattering terms can be identified
as affecting very different and independent parts of the measured temporal
profile. In fact, absorption interactions are progressively affecting late times,
while scattering strongly affects the early part of the detected signal. This fact
can lead to an evident advantage in terms of understanding the different
physical phenomena and the measurement techniques of the optical
properties. For this reason, the time domain represents a primary regime
for studying and understanding photon transport. However, the time domain
and CW domain can be extremely accurate in measuring the optical
properties of diffusive media, showing that through designed experiments
absorption and scattering can be decoupled also in the CW domain.6,7 In this
book, the time domain (including the special CW case) is the background for
studying photon transport. In any case, for tutorial purposes, in this manual
few examples of solutions will be discussed in the other domains.
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Note that the expressions “time (temporal) domain” and “CW domain,”
utilized for simplicity in this manual, in general should be more precisely
written with the longer expressions “spatial time (temporal) domain” and
“spatial CW domain.”

Using this manual in everyday practice

Solutions of photon transport can find a natural use in the assessment of the
optical properties (absorption and scattering) of scattering media. In fact,
these measurements often need, in the inversion procedure, a forward model
that describes the dependence of the detected light on the values of the optical
properties. Moreover, in the biological domain, the optical properties may in
turn be linked to biological quantities important for the understanding of
related underlying physiological mechanisms (see Fig. 1). The latter biological
application is made possible by the fact that near-infrared light (typical light
utilized for biological measurement) can penetrate deeply into tissues (some
centimeters) and is sensitive to several tissue constituents.

More specifically, any biological tissue represents a complex random
medium wherein light undergoes many scattering events and where, in many
practical cases, its propagation may be suitably described as a diffusion
process. The interaction of the near-infrared light with a biological tissue is
dominated, with few exceptions, by scattering effects (the distance between
two subsequent scattering events is on the order of �100 mm). However, most
of the physiological information is led by the absorption of chromophores
(e.g., oxy- or deoxy-hemoglobin) naturally present in the tissues. The

Figure 1 General approach allowing one to extract biological quantities from light that has
traveled through a tissue.
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possibility to treat this problem as a diffusion process, allows us to assess the
small contribution of the absorption by isolating it in a very efficient manner
from scattering. It is in this sense that the DE solutions proposed in this
manual may represent a very powerful tool for the physiologist, the medical
doctor or the engineer involved in the development of new instrumentation for
biomedical optics.3,8,9 These reasons are also why the solutions reported in
this manual are already at the core of well-known instrumentation, such
as near-infrared spectroscopy (NIRS) and diffuse optical tomography
(DOT).10,11

Organization of the Manual

The text is organized in three main parts: I) General theory of photon
migration; II) Analytic and semi-analytic solutions; and III) Validation of the
solutions.

Part I

Part I introduces the whole book and describes the theories that will be used.
This part ranges from Ch. 1 to Ch. 4.

• In Ch. 1, the general concepts and the physical quantities necessary to
describe light propagation through absorbing and scattering media are
introduced.

• In Ch. 2, the RTE and its main properties are described and discussed.

• In Ch. 3, the DE is derived starting from the RTE, and the reader is
introduced to the general properties of the DE.

• In Ch. 4, the classic anisotropic diffusion equation (ADE) is derived
from the anisotropic generalized RTE.

Part II

In part II, specific analytical and semi-analytical solutions derived from the
theories presented in part I are carefully described. This part ranges from
Ch. 5 to Ch. 14.

• Chapter 5 is devoted to solutions of the DE for homogeneous media.

• Chapter 6 is dedicated to ballistic and quasi-ballistic radiation and to a
heuristic solution designed to model the effect of scattering in ballistic
photon detection.

• Chapter 7 provides a general introduction to the calculation of the
penetration depth in scattering media delivering analytical solutions for
a diffusive slab.

• Chapter 8 focuses on the radial and lateral penetration depth in a
homogeneous slab.
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• Chapter 9 analyzes the detector-free propagation of light through a
scattering and absorbing medium.

• Chapter 10 represents a special topic: hybrid solutions for a
homogeneous slab, based on solutions of the RTE and the telegrapher
equation.

• In Ch. 11, a solution of the DE for a two-layer medium is described.

• In Ch. 12, solutions for N-layered media are presented.

• In Ch. 13, solutions of the perturbed DE, when small defects are
introduced into the medium, are obtained with the Born approximation.

• In Ch. 14, time-domain DE solutions for the Raman and the
fluorescence signals are presented.

Part III

In part III, the obtained solutions are validated by means of comparisons with
the results of reference MC simulations. This part ranges from Ch. 15 to
Ch. 18.

• In Ch. 15, elementary MC methods typically utilized to describe
photon migration in biomedical optics and, in general, in turbid media
are presented.

• In Ch. 16, the different MC codes implemented to generate the
reference data utilized to test the analytical and semi-analytical
solutions proposed in this manual are carefully described in detail.

• Chapter 17 is dedicated to the validation of the solutions presented in
part II. The validations are done by means of comparisons with the
MC reference data of Ch. 16, and the results of the comparisons are
described and discussed.

• In Ch. 18, the software included in is described (MATLAB
functions). The collection of MATLAB functions estimates almost all
the solutions of photon transport presented in the manual. A large set
of reference MC data (Excel *.xlsx format), which can be used as a
standard reference, is also included in . Note that the old software
named Diffusion&Perturbation together with the FORTRAN codes of
the solutions of Ref. 1 can always be found in .

Beyond Photon Migration and Biomedical Optics

It is worthwhile at this point to conclude this preface by recalling that diffusive
processes can be placed in a more general context that goes beyond
biomedical optics. This fact may be better appreciated by noting that
mathematical equations are in a way quite similar to words; i.e., they acquire
their real meaning only when immersed in a precise context. This appears to
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be also the case for the DE. In fact, many media (agricultural products, wood,
food, plastic materials, paper, pharmaceutical products, etc.) have optical
properties at visible and/or near-infrared wavelengths for which light
propagation in the diffusive regime can be established. Therefore, the same
techniques used to study biological tissues can be applied to the monitoring of
industrial processes, for quality control,12–17 or in completely different fields.

Indeed, the theories presented in this manual, i.e., the RTE and the DE,
arise from the more general transport theory.18,19 Transport theory concerns
the transport of “particles” through a “background medium” and is used in
several applications where the transported particles and the host medium can
have a very different nature and be represented by very different physical
quantities. Thus, in general, the transport equation takes its sense depending
on the physical phenomenon we want to describe. The advent of personal
computers has made several numerical methods affordable to solve transport
theory, and the availability of numerical solutions has further encouraged the
use of this theory to solve a panoply of practical problems. The list of
applications is surprisingly long and eclectic. Duderstadt and Martin19

summarized for us some of the most relevant applications of transport theory:

Neutron transport in nuclear reactors, Shielding of radioactive
sources, Penetration of X-ray through matter, Brownian motion,
Sound propagation, Propagation of light through the atmosphere,
Propagation of light through stellar matter, Gas dynamics, Plasma
dynamics, Transport of natural aerosols in the atmosphere, Diffusion
of molecules in gases and fluids, Multiple scattering of electrons,
Diffusion of holes and electrons in semiconductors, Photon transport
through biological tissues, Transport of particles air pollution, Traffic
flow, etc.

Thus, despite the different kinds of particles (neutrons, gas molecules, atoms
of plasma, electrons, photons) or quantities that may be involved in the
transport processes, all of these phenomena can be studied and described by
using the same basic equation. When the transport process becomes diffusive,
the transport equation can be simplified through the DE. Given a physical
quantity u representative of the physical process studied (for instance, the
particle density), whenever u is described by the equation



t
uð~r,tÞ � k1∇2uð~r,tÞ þ k2uð~r,tÞ ¼ 0, (1)

we are dealing with a diffusive process. The coefficient k1 is related to the
spatial and temporal scale of the diffusive phenomenon studied, and the
coefficient k2 is related to the probability that the transported particles will be
absorbed.

xxxiiiPreface



For example, for radiative transfer processes, k1 will be related to the
transport coefficient or diffusion coefficient of photons through the medium.
For neutron transport processes, k1 will be related to the transport coefficient
of neutrons through the medium. For the diffusion of electrons and holes in
semiconductors, k1 will be related to the electrical conductivity. For the
diffusion of molecules in gases, k1 will be related to the transport coefficient of
the molecules through the gas. The above equation with k2 ¼ 0 can be also
used to describe the conduction of heat in solid isotropic materials, where u
will be the temperature of the medium, and k1 will be the thermometric
conductivity of the substance, i.e., a material-specific quantity depending on
the thermal conductivity, the density, and the specific heat of the substance.20

The same equation is thus associated with very different physical concepts.
Usually, a diffusion process is associated with the random movement of a

certain kind of particles. However, in some situations this is not so evident, as
in the case of the physical diffusion of heat or the diffusion of fluids through
porous materials.21 This fact manifests the dichotomous nature of the
diffusion process.21 The dichotomous nature of diffusion theory has been
noted by Narasimhan,21 who showed how the equations of physical diffusion,
i.e., Fourier theory of heat conduction,22 and stochastic diffusion, derived
from the Laplace theory of probability,23 arose. Later, Albert Einstein
obtained a single molecular-kinetic heat theory24,25 wherein the equivalence
between the diffusion coefficient of the physical process and of the random
event was used. In physics, the work of Fourier inspired the use of the
diffusion equation to study electricity phenomena, diffusion of molecules, and
fluid flow.21 The probability theory of Laplace inspired, at the end of the
nineteenth century, scientists, economists, and statisticians to formulate a
stochastic diffusion equation wherein the concept of probability density was
used.21 Given the high number of diffusion processes that can be observed in
natural phenomena, we can view diffusion as a multi-fold theory that can
assume very different physical meanings depending on the nature of the
processes.

The above few examples and comments clearly show us that with the same
mathematical tool different physical processes can be studied; however, given
the intrinsic differences between the physical processes involved, each one
requires a different physical interpretation of Eq. (1). These considerations
want to emphasize that the solutions presented in this manual may have a
quite larger field of use than that of tissue optics. Indeed, it is a characteristic
of nature to show sometimes similar physical laws when processes involve
different physical quantities.

We finally point out that the theories and solutions presented in this book
have been obtained with reference to media illuminated by unpolarized light.
However, the solutions are also applicable to media illuminated by polarized
light, which commonly occurs when laser sources are used. In fact, multiple
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scattering randomly changes the polarization of scattered light so that light
detected after a sufficiently large number of scattering events is completely
depolarized. The previous state of polarization only remains near the source
where photons arrive after a small number of scattering events. It has been
shown with numerical simulations26,27 and experiments27 that when
propagation occurs in the diffusive regime (i.e., when the solutions presented
in this book become applicable), received photons have lost almost all traces
of the initial state of polarization, and the results for polarized light become
almost identical to those obtained for unpolarized light.

Thousands of papers on the diffusion of light have been published in
scientific journals. For this reason, the references presented in this manual
cannot a fortiori be exhaustive. Thus, we will mention only a few good
introductory references, such as the monograph dedicated to the diffusion of
light by Ripoll.4 This reference, mainly refers to publications in the field of
biomedical optics and more precisely to the field of NIRS and diffuse optical
tomography. In order to have a more complete view of photon transport,
we also suggest the reader to refer to other books on light propaga-
tion.18,19,28–33
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