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It is quite common to start the study of geometrical optics
with Fermat’s principle and derive its laws of rectilinear
propagation, refraction, and reflection from it in 2D. Then,
using the paraxial or the small-angle approximation of the
rays, launch into the imaging equations for refraction and
reflection. Sometimes, instead of deriving the equations for
reflection independently, they are obtained from those of
refraction by giving a value of �1 for the refractive index
and replacing the angle of refraction with a minus value as
the angle of reflection. As soon as these equations are
established, the fact that they have been obtained in the
small-angle approximation is forgotten. Has anyone who
has obtained the image of an object by a graphical
construction wondered if the rays used in the construction
actually make small angles? In fact, the small-angle
approximation is never quantified, except that it is
imposed by replacing the sines and tangents of the angles,
however large, by the angles (in radians). Even the curved
refracting and/or reflecting surfaces are replaced by their
paraxial counterparts in the name of tangent planes. The
image of an object obtained in this manner is called a
Gaussian image. Unfortunately, when done in this man-
ner, Gauss, who introduced the paraxial or Gaussian
approximation, does not get credit for how he came up with
the idea of his approximation.

Rays do not travel only in a plane. Hence, it is important to
consider propagation of skew rays and derive the laws of
geometrical optics in 3D.1,2 When this is done, we realize
that, to trace a ray exactly from one point to another on an
imaging surface, the transverse coordinates of the surface
point depend on the direction cosines of the ray and the
distance between the two. However, the distance itself
depends on the coordinates of the incident point. Hence,
the two equations are coupled and must be solved
simultaneously. The ray is refracted or reflected according
to the law of refraction or reflection. In an imaging system
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consisting of multiple refracting and/or reflecting surfaces,
where a ray originates at a point in the object plane,
coupled equations are solved when the ray leaves one
surface and meets another, finally reaching the image
plane. The refracted and reflected rays lie in the plane of
incidence, i.e., the plane containing the incident ray and
the normal to the refracting or reflecting surface at the
point of incidence. In the small-angle approximation,
projections of a skew ray in two orthogonal planes
propagate independently of each other. A ray in the
tangential plane, for example, remains in that plane after
refraction or reflection. Because of the rotational symmetry
of an imaging system, the consequence is that we need to
trace rays only in one of these planes. It is a common
practice to trace rays in the tangential plane of an imaging
system. Because the sine of an angle is replaced by the
angle itself, which is a first-order approximation, ray
tracing in this approximation is called first-order optics,
and the process of determining the image in this manner,
regardless of the magnitude of the angles and sizes, is
called Gaussian optics.

Gaussian imaging is used to determine the image location
and its size in terms of the object location and its size. It
depends only on the vertex radius of curvature of a surface.
Thus, the Gaussian image formed by a conic surface of
some vertex radius of curvature is the same as that formed
by a spherical surface of the same radius of curvature. How
does the difference in the two surfaces manifest itself?
While the two Gaussian images are the same, their actual
images and qualities are not. In Gaussian optics, the image
is aberration free; in reality, that is generally not the case.
The rays from a point object incident on an optical system
do not all pass through its Gaussian image point. Their
distribution is called a spot diagram, and their separations
in the image plane from the Gaussian image point are
called transverse ray aberrations. The spherical wavefront
incident from the point object is not refracted by it as a
spherical wavefront. The deviations of the wavefront along
the exact rays from a spherical surface with its center of
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curvature at the Gaussian image point and passing
through the center of the exit pupil of the imaging system
are called wave aberrations. Such deviations are different
for spherical and paraboloidal refracting surfaces. A lens
designer designs an optical imaging system with multiple
surfaces to control the aberrations to required tolerances
over a certain field of view of an object.

For a rotationally symmetric imaging system, the aberra-
tions at a point (r, u) on its pupil for the imaging of a point
object at a height h from its optical axis depend on the
integral powers of three rotational invariants: h2, r2, and
hrcosu.1 The order of such aberrations is even. This is how
the fourth-order, or primary, or Seidel wave aberrations r4,
hr3cosu, h2r2cos2u, h2r2, and h3rcosu come about. These are
spherical aberration, coma, astigmatism, field curvature,
and distortion, respectively. The higher-order aberrations
can be similarly written. Since the ray aberrations represent
the gradients of the wave aberrations, their order is one less
than that of a corresponding wave aberration. Thus, Seidel
ray aberrations, for example, are of the third order. If the
image is observed in a plane that is displaced along the
optical axis from the Gaussian image plane, a defocus wave
aberration varying as r2 is introduced. Moreover, if the
aberration is considered with respect to a point in the
Gaussian image plane other than the Gaussian image point,
a wavefront tilt aberration varying as rcosu is introduced.
These are referred to as classical aberrations. A wave
aberration of a certain order can be combined with those of
lower orders to minimize its variance across the pupil. These
aberrations are called balanced aberrations and are repre-
sented by Zernike polynomials. These polynomials are
orthogonal to each other across a circular pupil. A wave
aberration can also be balanced so that the variance of the
corresponding ray aberrations, or the spot size, is mini-
mized. However, such wave aberrations are not orthogonal
to each other, but their gradients are.

In principle, a system can be designed to yield the image of
a point object to be small to some prescribed tolerance.
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Even if the rays transmitted by the system intersect at the
Gaussian image point, the observed image, instead of being
a point, is a light distribution, called the Airy pattern.1,3

Owing to the circular symmetry of the pupil, the pattern
consists of a bright circular spot, called the Airy disc,
surrounded by alternating dark and bright circular diffrac-
tion rings of decreasing brightness. The Airy disc contains
83.8% of the total amount of light. Its radius is 1.22lF,
where l is the wavelength of light, and F is the focal ratio
(distance between the pupil and image planes divided by
diameter of the pupil) of the image-forming light cone. The
Airy pattern also represents the squared modulus of the
Fourier transform of the uniform distribution of light across
the circular pupil because of the diffraction of light. The
brightest point lies at the Gaussian image point. This point
is where the center of the pattern lies and is equidistant
from the points on the spherical wavefront; it is also where
Huygens’ secondary wavelets interfere constructively. When
aberrations are present in a system, the points on the
wavefront exiting from its pupil are not equidistant from the
center of the pattern, and secondary wavelets interfere
partially destructively, thus resulting in a reduction of the
brightness at this point. When the defocus wave aberration,
varying as r2, is an integral number of waves, secondary
wavelets interfere destructively at the center, and the
irradiance reduces to zero.

For small aberrations, the relative brightness at the center,
called the Strehl ratio, is given approximately by
exp(�s2

F), where s2
F is the variance of the phase

aberration.1,3 The fabrication tolerance for a single mirror
for a Strehl ratio of 0.8, for example, is approximately l/30
(where we have doubled the surface error to obtain the
wavefront error because of reflection of light). The irradi-
ance distribution of the image of a point object is called the
point-spread function, and its Fourier transform is called
the optical transfer function (OTF).3 The OTF is a complex
function, and the integral of its real part yields the Strehl
ratio. Its modulus is called the modulation transfer
function (MTF).
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In the presence of aberrations, whereas the spot diagram
grows linearly in size, the distribution of light in the
observed image changes without such increase, as shown in
the figure.3 Although the spot diagram does not represent
the true distribution of light in the image, lens designers
use it as a convenient tool in the early stages of a design. As
the spot diagram becomes small in the range of the Airy
disc, they resort to diffraction calculations of the image to
ascertain the image quality. Two commonly used image
quality criteria are the fraction of light on a pixel in the
image plane and the MTF of the system.

While ray geometrical optics determines the location and
size of the image of an object, its quality is determined by
wave diffraction optics, and the aberrations provide a
bridge between the two. It is suggested that, in a course on
geometrical optics, the paraxial approximation be derived
from 3D ray tracing and the Airy pattern be discussed at
least at an elementary level, including how it is impacted
by aberrations.

Aberrated PSF: (a) Airy pattern, (b) defocus, (c) spherical,
(d) balanced spherical, (e) astigmatism, (f) balanced
astigmatism, (g) coma, and (h) random aberration.
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