Polymer photovoltaics is a discovery that potentially houses the solutions to many of the problems currently encountered with traditional photovoltaic technologies. Most notably, the technology offers the possibility for ultrafast processing, low cost, light weight, flexibility, and a very low thermal budget. The technology rests on a moderately solid base of scientific literature spanning from the first prototypical literature reports. Among the most prominent contributors are the groups of C.W. Tang, R. Friend and A.J. Heeger through an impressive number of original research papers documenting a steady increase in the performance at the level of very small devices with power-conversion efficiencies of up to around 5% for single junctions, which today represent the state of the art. This base of research reports, conference proceedings, reviews, and even many books makes the topic highly accessible to the newcomer and as such there is no need for a new book on the topic from a theoretical or explanatory point of view. One of the problems when entering the field of organic photovoltaics is getting a good idea of how to actually make devices, how to study them, and how to characterize them. The ambition of this book is that it should be a practical guide in the laboratory for the experimental solar cell scientist whether he or she is involved with synthesis, device preparation, processing, or device characterization. Our feeling is that such an experimental guide will be useful to all scientists working practically in the field. This book presents the process of creating a polymer solar cell device starting with a description of materials including how they are made and characterized, followed by how the materials are processed into devices and films and how these are characterized. Following on from this, the status of two emerging fields of polymer solar cells are described, namely, degradation and stability, and large-scale processing.
|