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Abstract. The distribution of the daily average air temperature with high spatial resolution is vital
for hydro-ecological applications. The air temperature usually recorded at fixed-point stations pro-
vides little distribution information and easily suffers from the scarce amount and uneven distri-
bution of the stations in the data sparse regions. In this study, a method based on multisource spatial
data was developed to estimate the spatial distribution of daily average temperature, especially for
data sparse regions. In this method, the instantaneous temperature was retrieved first using the
moderate resolution imaging spectroradiometer data, which was then transformed to a daily
value using transformation equations. Second, the global land data assimilation system air temper-
ature data were spatially downscaled and used to improve the data accuracy from step 1 at low
temperatures. This method was applied in the Ili River basin in Central Asia, and the results were
evaluated against data from two stations’ observations and in situ data from a field test site. The
results showed the correlation coefficient varies from 0.90 to 0.94 and the root mean square
deviation is ∼3°C, indicating the generated temperature matched the observations well. This sug-
gests the method is an alternative for data sparse regions. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in
part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.7.073478]
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1 Introduction

Air temperature is one of the most important parameters for a wide range of applications in
ecology and hydrology. Near surface air temperature with varying spatial and temporal resolu-
tion is often required in many hydro-ecological modeling techniques. The values of surface air
temperature are now usually recorded at a fixed point at stations, which provide little distribution
of air temperature over regions. However, spatial distribution of air temperature is vital for the
regional hydro-ecological modeling.

Researchers have explored various methods to generate spatial air temperature. Some
researchers like Peterson et al.,1 Anderson,2 and Florio et al.3 used spatial interpolation to esti-
mate spatial distribution of air temperatures. However, the reliability of results from interpola-
tions greatly depends on the density stations and the numbers of observations; thus, these
methods are limited for application over large area, especially in data sparse regions.

Other researchers have used remote sensing data to derive spatial distribution of air temper-
atures because the observations from satellites can provide high temporal-spatial distribution
information of the underlying surface, which can be used to derive the air temperature.
Land surface temperature (LST), which can be obtained through the split-window technique,
is usually used to derive the near surface air temperature.4–6 Specific algorithms have been
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developed for different sensors, such as advanced very high resolution radiometer, moderate
resolution imaging spectroradiometer (MODIS), and Meteosat to get LST.7–10 At present, the
methods used to derive near surface air temperature from LST can be divided into three
main categories: the statistical approach,11–14 the temperature-vegetation index (TVX)
approach,15–19 and the energy-balance approach.20–22

The statistical approach is usually based on the linear regression between observed air tem-
perature and LST, which is relatively simple and commonly used. Air temperature data can be
derived with high accuracy in the regions where the methods or the relationship were established.
To enhance the physical basis of the statistical methods, many researchers have attempted to
introduce more parameters reflecting the effects of various factors (seasons, vegetation, topog-
raphy, etc.) when the relationship was built.23,24 However, these methods suffer from the depend-
ence on the calibration data, which limits the application of these methods, especially in data
sparse areas.

The TVX approach is based on the assumptions that a linear and negative relationship exists
between LST and normalized difference vegetation index (NDVI) and that the air temperature is
equal to the radiometric temperature in a fully vegetated area. This method involves only two
factors (LST and NDVI) to retrieve the air temperature and seems easy to implement, but it has
limitations as well. Many factors like solar radiation, local topography, and seasonality are over-
looked in this approach, and only NDVI is taken into account besides LST, so this approach is
sometimes inadequate when the NDVI does not work well.25

Energy-balance methods are physically based. In these methods, the physical processes of
energy transportation and transformation are considered, instead of using only empirical or
statistical relationships. However, energy-balance models require soil, canopy, and atmospheric
data that are often unavailable over large areas.

In summary, the methods mentioned above face challenges in deriving spatial distribution of
temperature over large areas, especially in data sparse regions either due to the strong dependence
on the stations’ calibration data, the less consideration of the underlying conditions, or the avail-
ability in data acquisition. The temperature derived using remote sensing is often the instantaneous
value when the satellite passes by, while the daily value is required in many hydrological models.

In this study, a new method combining multisource spatial data was developed to estimate the
daily mean near surface air temperature at 2 m height (T2m), especially for data sparse regions. In
this new method, the Klemen algorithm created by Zakšek24 was used to first obtain the instant
T2m values on the basis of MODIS data products. The Klemen method was adopted for its
consideration of various radiation and underlying surface factors and its access to remote sensing
data. The instant T2m from Klemen method was transformed to the daily mean temperature
value by introducing the National Center for Atmospheric Research/National Centers for
Environmental Prediction (NCAR/NCEP) reanalysis temperature data. The derived daily
mean T2m was finally adjusted with the downscaled temperature data from global land data
assimilation system (GLDAS) to achieve higher accuracy at low temperatures.

2 Study Area and Materials

2.1 Study Area and In Situ Measurement

The temperature data inversion in this study was a part of the hydrological modeling in ungauged
regions in Central Asia. This study was carried out at the region containing runoff of the Ili River
(an international river lying between China and Kazakhstan, Fig. 1) covering an area of
115;000 km2. The outlet of the study area is the same as the outlet of the Kapchagay
Reservoir. The precipitation in this area varies greatly due to the topography. Depending on
the variation in topography, the precipitation in the Ili basin can reach up to 1000 mm∕year
in the mountains compared with 200 mm∕year in the valley. The temperature also changes
extensively because of the great differences in altitude.

Daily average temperature data from meteorological stations (at Yining and Zhaosu, located
in the plain and mountainous areas, respectively) were collected from 2005 to 2009, correspond-
ing to the remote sensing–based temperature simulation and hydrological modeling period.
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These data were collected for the derived daily average temperature validation. It is noticed that
the derived daily average temperature using the Klemen method based on multisource spatial
data has a height of 2 m above the surface,24 while the observations from Chinese meteorological
stations are recorded at 1.5 m above ground according to the “Technical regulation of meteoro-
logical observations” published by the China Meteorological Administration. The derived daily
average temperature was transformed to the height of 1.5 m above ground before it was validated
using observations.

A field experiment was carried out for a test site (81.10°E, 42.78°N and 2017 m altitude) near
Aheyz, a southern study area (Fig. 1). The instantaneous air temperatures are recorded using
the automatic meteorological station HOBO and are available at 4 min intervals from
August to November in 2009 (see Table 1 for details on the instrumentation for the temperature
measurements). The instant temperature recorded by HOBO was used to have the simulated
instant temperature value from Klemen method tested, and the daily mean value from the
HOBO records were used to validate the derived daily mean values from the Klemen method
after temporal transformation and downscaled GLDAS temperature. So the measurements using
HOBO were carried out 2 m above the ground to be consistent with the height described in
Zakšek.24

2.2 Spatial Data

Multisource spatial data platform products were used in this study to estimate daily mean values
of near surface air temperatures (T2m), including the MODIS, GLDAS, Shuttle Radar
Topography Mission (SRTM), and NCAR/NCEP products. These data products were selected
for their global coverage and common use in various research fields, both of which may offer this
study wider application in other regions.

Fig. 1 Sketch map of the study area and validation site locations.

Table 1 Instrumentation (HOBO) for temperature measurements at the Aheyz.

Parameter Sensor Parameters Maker
Placement
height

Air temperature Temp/RH sensor (12-bit) w∕2m Onset 2 m
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Three MODIS products at 1 km spatial resolution (version 5) were used to derive the instant
T2m: (1) 8-day albedo (MCD43B3), (2) 16-day vegetation index (MOD13A2), and (3) daily land
surface temperature and emissivity (MOD11A1).

NCAR/NCEP near surface air temperature data were used in this study to transform the
instant T2m to a daily mean value.26–28 This NCAR/NCEP dataset has a spatial resolution of
1.875 deg and a temporal resolution of 6 h, so there are four instant values (UTC 00:00,
06:00, 12:00, and 18:00) for each day.

GLDAS provides the near surface air temperature data with a spatial resolution of 0.25 deg
and a temporal resolution of 3 h.29 These data were then spatially downscaled to 1 km using the
SRTM elevation data on the basis of an assumed temperature lapse rate. The downscaled results
were then used to adjust the MODIS retrieval results.

All of these spatial data can be obtained through the Internet for free (MODIS http://reverb
.echo.nasa.gov/reverb/; NCAR/NCEP http://www.esrl.noaa.gov; GLDAS http://mirador.gsfc
.nasa.gov/; SRTM http://datamirror.csdb.cn/).

3 Methodology

Daily average air temperature data were simulated and compared with the observations from two
weather stations and a field observation site. For this comparison, two processes were applied:
(1) the instant temperature value when the satellite (Terra) passed above was derived first from
MODIS products and then was transformed to daily mean value using a statistical method pre-
sented in this study; (2) the derived daily average air temperature from step (1) was modified by
replacing the simulations at low temperatures with downscaled GLDAS air temperature to
achieve better accuracy when simulating low temperatures. The daily average air temperature
data from GLDAS with coarse spatial resolution were downscaled to the resolution of 1 km using
the relationship between altitude and temperature.

3.1 Klemen Method–Based Daily Average Temperature Retrieval

3.1.1 Instantaneous temperature retrieval using the Klemen method

The method developed by Zakšek24 was used to obtain instant air temperature values at a height
of 2 m. This method [Eq. (1)] was adopted because of its consideration of various effects includ-
ing season, solar radiation, and underlying surface conditions. The Klemen method accounts for
more physical processes compared with the simple statistical methods mentioned above, and all
the parameters required for this method can be prepared using multisource spatial data.

T2m ¼ LSTþ 1.82 − 10.66 cos zð1 − NDVIÞ þ 0.566α

−3.72ð1 − ALÞðcos i∕ cos zþ ðπ − sÞ∕πÞRs ↓ −3.41Δh;
(1)

where T2m is the instant temperature at 2 m height and the unit is K; LST is the instantaneous
daytime land surface temperature from MODIS MOD11A1 in K; z is the solar zenith angle in
rad; α is the solar azimuth start from the south in rad; AL is the surface albedo; i is the solar
incident angle in rad; s is the slope in rad; Rs ↓ is the down-welling surface short-wave radiation
flux inw∕m2; andΔh is the difference between the pixel elevation and the mean elevation within
the vicinity of 20 km in km.

The key parameter in this step is the accuracy and representativeness of the LST. As
described in the spatial data section, the LST data used in this study were instant values
from the MODIS product (MOD11A1). The LST contained in the MODIS MOD11A1 dataset
was generated using the generalized split-window method proposed by Wan and Dozier30 on the
basis of MODIS thermal infrared ray band 31 and band 32. According to Wan and Dozier,30 the
atmospheric effects in the LST retrieving were corrected on the basis of differential absorption in
adjacent thermal infrared bands rather than on absolute atmospheric transmission in a single
band, so it is less sensitive to the uncertainties in optical properties of the atmosphere and
no profiles of atmospheric water vapor and temperature were needed. The accuracy of the
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MODIS LST was discussed by many authors and the nominal accuracy was thought to be
�1K.30–32 This study was a part of the hydrological modeling in ungauged regions and was
designed to provide daily average surface air temperature estimation for distributed hydrological
models, especially in data sparse regions, and no further atmospheric correction was applied to
the MODIS LST data.

3.1.2 Time-scale transformation to daily average value

The temperature obtained directly from the Klemen method is the instantaneous value when the
satellite (Terra) passes by, while the daily mean value is required in most hydrological models.
The temporal scale of the simulated temperature must be transformed before it can be used for
hydrological modeling. In this study, the time-scale transformation was based on the statistical
relationship between the instant temperature and the daily mean value. Unlike in the research
carried out by Colombi, few weather stations exist in the study area, so an insufficient number of
observations are available to establish the relationship between instant temperature and daily
mean temperature. The NCAR/NCEP reanalysis temperature data were introduced to enhance
this relationship.

As described above (in Sec. 2.2), the NCAR/NCEP reanalysis temperature data provide four
instant temperature values in the study area (UTC 00:00, 06:00, 12:00, and 18:00) each day. The
local time in the study area is ∼5h before the UTC time, which means that the UTC 06:00 is
approximately 11:00 in the study area, very close to the time the satellite (Terra) passes this
region (the time that Terra passes the study area varies in local time from about 10:00 a.m.
to about 12:00 a.m.). If we premise two simple assumptions, the daily average temperature
can be derived: (1) a strong relationship exists between the NCAR/NCEP 06:00 temperature
and the daily mean NCAR/NCEP temperature and (2) the same relationship exists between
the derived instantaneous Klemen T2m and the simulated daily mean temperature.

Figure 2 shows 10 NCAR/NCEP pixels of the study area and the relationship between the
instant temperature value (UTC 06:00) and the daily mean value (the mean of the four NCAR/
NCEP instant values) that was established for each pixel [Eqs. (2) to (11)].

NCEP42 24∶y ¼ 0.85x − 1.87R2 ¼ 0.96RSMD ¼ 1.43°C; (2)

NCEP43 24∶y ¼ 084x − 1.96R2 ¼ 0.98RSMD ¼ 1.59°C; (3)

Fig. 2 Location of the National Center for Atmospheric Research/National Centers for
Environmental Prediction pixels over the study area.
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NCEP44 24∶y ¼ 0.82x − 1.81R2 ¼ 0.97RSMD ¼ 1.68°C; (4)

NCEP45 24∶y ¼ 0.82x − 1.86R2 ¼ 0.98RSMD ¼ 1.49°C; (5)

NCEP46 24∶y ¼ 0.84x − 2.83R2 ¼ 0.98RSMD ¼ 1.53°C; (6)

NCEP42 25∶y ¼ 0.92x − 5.72R2 ¼ 0.96RSMD ¼ 1.57°C; (7)

NCEP43 25∶y ¼ 0.87x − 4.11R2 ¼ 0.98RSMD ¼ 2.69°C; (8)

NCEP44 25∶y ¼ 0.87x − 4.18R2 ¼ 0.97RSMD ¼ 1.95°C; (9)

NCEP45 25∶y ¼ 0.85x − 1.92R2 ¼ 0.97RSMD ¼ 1.88°C; (10)

NCEP46 25∶y ¼ 0.83x − 1.93R2 ¼ 0.98RSMD ¼ 2.10°C: (11)

Good correlation between the instant NCAR/NCEP value (UTC 06:00) and the daily mean
value (obtained from NCAR/NCEP instant values) can be found from Eqs. (2) to (11), each of
which stands for the linear relationship between the NCAR/NCEP 06:00 instant temperature and
the daily mean NCAR/NCEP temperature within each NCAR/NCEP pixels. The R2 of these
statistical equations vary from 0.96 to 0.98 and most RMSE are <2°C, proving the validity
of assumption 1 in all 10 NCAR/NCEP pixels.

Though assumption 2 was not directly proven like assumption 1, it is still supported indi-
rectly by the following analysis. The NCAR/NCEP reanalysis data were generated through data
assimilation system using multisource observations with advanced quality control and monitor-
ing components.26–28 It is widely used in the research and climate monitoring communities.
So the NCAR/NCEP air temperature values in this study were supposed to be adequate to
demonstrate the comprehensive conditions within NCAR/NCEP pixels, and the temporal
scale transformation equations [Eqs. (2) to (11)] from the statistical analysis of NCAR/NCEP
data are reasonable and representative within NCAR/NCEP pixels. As described above, the time
of the derived instantaneous T2m was close to the time of NCAR/NCEP 06:00 temperature,
so the temporal scale transformation equations between NCAR/NCEP 06:00 temperature
and daily mean value based on assumption 1 of using reanalysis temperature data can be applied
to estimate the daily mean temperature using derived instantaneous T2m.

In addition, the derived instantaneous T2m data using Klemen method has higher spatial
resolution than the NCAR/NCEP pixels, so there are many instantaneous T2m pixels within
an NCAR/NCEP pixel. In this study, the temporal scale transformation equation of each
NCAR/NCEP pixel was applied to the smaller T2m pixels within its coverage.

3.2 New Daily Average Temperature from Downscaled GLDAS Data
and Klemen Method

The GLDAS temperature data were used to improve the simulations accuracy at low temper-
atures from Sec. 3.1. Original GLDAS datasets provided the near surface air temperature with
a high temporal resolution of 3 h and a coarse spatial resolution of 0.25 deg. Before adjusting
the simulated temperature data based on the MODIS products, the GLDAS temperature data
were downscaled to the resolution of the MODIS grid size.

The downscaling process rested on an assumption that the GLDAS temperature value of each
grid represents the average condition within this grid, so the GLDAS temperature value of each
grid should equal the temperature at the average elevation of the grid. On the basis of this
assumption, we introduced the temperature lapse rate to quantify the extent of temperature
change with elevation [Eq. (12)]. Along with the prerequisites described above, the core of
this method is the introduction of a higher (compared with GLDAS) spatial resolution
(1 km) digital elevation model (DEM) refining the spatial distribution of the GLDAS temperature
value and proper temperature lapse rate value assignment.
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ΔT ¼ ΔH � δ; (12)

where ΔT stands for the temperature difference between two places A and B, ΔH is the altitude
difference between B and A, and δ is the temperature lapse rate.

The lapse rate at which air cools with elevation change varies from ∼0.98°C per 100 m for dry
air (i.e., the dry-air adiabatic lapse rate) to ∼0.40°C per 100 m (i.e., the saturated adiabatic lapse
rate).33 In this study, the temperature lapse rate was fixed at 0.56°C∕100 m according to the
previous research work carried out in the study area.34 The downscaling of GLDAS consists
of four steps: (1) the original GLDAS daily mean temperature data (the mean value of eight
3 h instant temperature values) was calculated; (2) the average elevation with the spatial reso-
lution of ∼25 km matching the original GLDAS grid size was prepared; (3) the temperature at
sea level with a spatial resolution of 25 km was calculated according to Eq. (12) using data from
(1) and (2) and then bilaterally interpolated to 1 km; (4) the final downscaled temperature result
with a spatial resolution of 1 km was calculated by data from (3) and DEM (1 km) using Eq. (12).
Figure 3 gives the procedure for downscaling.

Based on the two daily mean air temperature data calculated above, new combined temper-
ature data were generated. According to our simulation results (details in Sec. 4), the daily mean
values based on the Klemen method show good heterogeneity of spatial distribution of temper-
ature and perform better over a certain threshold, with these values becoming less accurate below
this threshold. The downscaled GLDAS daily mean temperature data were used to replace
the values based on the Klemen method under the threshold because of their higher accuracy
compared with the station observations at low temperature. However, above the threshold, the
values based on the Klemen method were retained because of their ability to represent the spatial
heterogeneity of temperatures affected by various underlying parameters, unlike the downscaled
temperature data, which are dominated by elevation only. The flow chart of the new daily mean
temperature data generation is shown in Fig. 4.

4 Results

4.1 Klemen Method–Based Daily Average Temperature

As described above, the station observations used in this study were recorded at a height of
1.5 m, which differs from the height of simulated surface daily average air temperature. So,

Fig. 3 Flow chart of the global land data assimilation system (GLDAS) temperature downscaling.
Tsea and Tcell mean the air temperature at sea level and pixel, respectively. Hcell is the pixel eleva-
tion and δ means the temperature lapse rate.
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before the validation was carried out, the simulations were transformed to the height of 1.5 m.
The temperature lapse rate in Sec. 3.2 was used for this transformation. The lapse rate at
0.56°C∕100 m should be appropriate and reasonable for the reason that it was from the
local study in this region based on the weather stations observations.

4.1.1 Derived instantaneous temperature

The instant air temperature was simulated and validated with the field observations. The recorded
instantaneous air temperature using HOBO at Ahyz was selected according to the transit time of
the Terra satellite. The simulation results and HOBO observations with comparable time were
then used for the accuracy analysis. Because of the data missing from the MODIS products (no
values were available in some image pixels), only part of the observations from HOBO during
the observation period have matched simulated values (Fig. 5).

The derived instantaneous temperature has a satisfactory result. The results indicate that the
instantaneous air temperature based on multisource spatial data has a high correlation with the
observations, and the R2 can be as high as 0.73 and the RMSE between derived air temperature
and observed values is 2.65°C.

4.1.2 Daily average temperature

The derived instantaneous air temperature was transformed to a daily average value and was then
validated using the observed daily average temperature from 2005 to 2009 at the Zhaosu and
Yining stations; the daily mean temperature observations from HOBO equipment were
also used.

Figure 6 shows that the daily average temperature after temporal transformation was less
accurate compared to the instantaneous values (Fig. 5). The RMSE and R2 at the Zhaosu station
during the simulation period are 4.9°C and 0.91, respectively. These two indexes performed

Fig. 4 The flow chart of daily average temperature estimation using the combined method.
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better at the Yining station where the RMSE is 4.19°C and the R2 is 0.94. When validated using
the observed HOBO daily average air temperature, the results based on the Klemen method
have a good performance, where the R2 is 0.79 and the RMSE is 2.29°C. According to Fig. 6,
the derived daily average temperature was more consistent with the observations at high tem-
peratures. The simulated daily average temperature was lower than the actual value when the
temperature was low, and the difference increases as the temperature decreases. The threshold
is ∼0°C.

4.2 New Daily Average Air Temperature

Similarly, the observed daily average temperature from 2005 to 2009 at the Zhaosu and Yining
stations, and the observations from HOBO were also used for downscaled GLDAS daily average
temperature validation. The results are shown in Fig. 7.

As shown in Fig. 7, the downscaled GLDAS daily average temperature performed well at
both weather stations. According to the regression analysis, the R2 at the Zhaosu station is 0.96
and the RMSE is 2.27°C during the simulation period, while the R2 and RMSE at the Yining
station are 0.96 and 2.73°C, respectively. According to the validation at HOBO location, the
downscaled GLDAS data have a similar accuracy as the data from the Klemen method. The
R2 and RMSE are 0.86 and 2.26°C, respectively.

The new daily average temperature data comprised a combination of the derived daily mean
temperature on the basis of remote sensing and the downscaled GLDAS data. Through the analy-
sis of Fig. 6, 0°C was selected as the threshold value mentioned in Sec. 3.3 to determine if the
simulated daily mean temperature using the Klemen method should be replaced with the
GLDAS downscaled value.

Fig. 5 Derived instantaneous temperature validation use HOBO observations.

Fig. 6 Derived daily average temperature validation based on Klemen’s method using observa-
tions from the Zhaosu (a) and Yining (b) stations during 2005 to 2009 and HOBO (c) from August to
November in 2009.
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The new daily average temperature shows significant improvement at low temperatures com-
pared with data obtained using the Klemen method (Fig. 8). During the simulation period, the R2

between the combined daily average temperature and observations from the Zhaosu station was
0.90, and this value was 0.94 at the Yining station. The RMSE at the Zhaosu station is 3.38°C,
while the RMSE is 3.13°C at the Yining station.

5 Discussion

5.1 Klemen Method–Based Daily Average Temperature

The instantaneous temperature simulated on the basis of multisource spatial data using the
Klemen method performs better than the daily average value derived by temporal transformation.
Two factors can possibly explain the obvious decrease in accuracy: temporal transformation and
the characteristics of the Klemen method.

The relationship between the instantaneous temperature at the satellite transit time and
the daily mean value was assumed to be linear in this study. This simplification will certainly
introduce uncertainties. The relationship established using NCAR/NCEP data stands for the
comprehensive level within each NCAR/NCEP grid. Error will also be introduced when this
relationship was used in pixels with higher spatial resolution. However, considering the high
correlation between the temperature at the transit time and the daily average value described
in Sec. 3.1.2, the high accuracy of the simulations validated using HOBO observations at
both instant and daily time scale, and the obvious underestimation shown in Fig. 6 for low tem-
peratures, the temporal transformation should not be primarily responsible for the decrease in
accuracy in the daily average temperature simulation.

Fig. 7 Validation of the GLDAS temperature downscaling data at Zhaosu (a) and Yining (b) sta-
tions during 2005 to 2009 and HOBO (c) from August to November in 2009.

Fig. 8 Validation of the new derived daily average temperature using observations from the
Zhaosu (a) and Yining (b) stations during 2005 and 2009.
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Equation (1) in Sec. 3.1.1 indicates that many parameters were included in the Klemen
method to depict the influence of various factors, such as radiation, season, vegetation, and
topography. The air temperature derived on the basis of this method shows sufficient spatial
distribution details, and the spatial pattern of the air temperature depending on the underlying
surface conditions is more reasonable (see Sec. 5.3). The Klemen method was proposed by
Zakšek24 using observations (from May to December 2005) from dozens of meteorological sta-
tions in Slovenia, Germany, and France. Due to the warm and humid climate in Europe, most of
the observations from these stations in 2005 fell into the temperature span above 0°C. Thus,
Eq. (1), which is based on these observations, may be innately more suitable for use at high
temperatures. The simulated instantaneous air temperature and daily average air temperature
validated using HOBO observations [Figs. 5 and 6(c)] have high accuracy and may profit
from the field observation time between August and September, when the temperature is
high. The climate conditions in the study area are different from where Eq. (1) was established;
the temperature span is wider and more low temperatures (<0°C) appear, which may make the
regional LST and NDVI in the study area no longer fit the relationship calibrated in Europe at
low temperatures.

In this study, no further atmospheric correction was applied to the LST data from MODIS
products. The atmospheric effects such as air moisture were partly removed or corrected when
the LSTwas generated using the generalized split-window method; the accuracy of MODIS LST
is ∼� 1K. The air moisture, which will become lower and drier at low temperatures, will cer-
tainly influence the simulation accuracy, but it should not mainly account for the low simulation
accuracy of this method (the overall RMSE of daily average simulation is >4K, Fig. 6) at low
temperatures.

In addition, in this study, the transformation equations obtained at coarse spatial resolution
based on NCAR/NCEP data were applied to the smaller T2m pixels within each NCAR/NCEP
pixel with MODIS grid size. Uncertainties will be introduced in this procedure because the stat-
istical relationship between instant air temperature and the daily average values vary when the
spatial resolutions change. This method was carried out for its simplicity and feasibility in the
data sparse area where the transformation equations with high spatial resolution are difficult to
establish and the computational burden will be heavy. In further study, more spatial resolution
independent transformation equations are needed.

5.2 Downscaled GLDAS Daily Average Temperature Data

The downscaled GLDAS daily average temperature performed better at two validated weather
stations than the data based on the Klemen method [Figs. 7(a) and 7(b)]. The RMSE between the
downscaled data and the observation is within 3 K, while the RMSE is >4K in Figs. 6(a) and
6(b). Though the downscaled data have better accuracy at the stations, this improved accuracy
did not equate to higher data quality. The downscaling process was based on the temperature
lapse rate and the assumption of a relationship between the air temperature and the elevation (see
Sec. 3.2). During this process, no factors other than elevation in this area were taken into account
to downscale the GLDAS air temperature data. Without considering the underlying surface com-
plexity, the downscaled GLDAS temperature data may face challenges where the underlying
surface conditions (water surface, dense vegetation, aspect, and so on) have significant
influences. The comparison between Figs. 6(c) and 7(c) shows that the data from downscaled
GLDAS and the Klemen method have similar accuracy or the data from the Klemen method
perform a little better at high temperatures using HOBO observations during the observation
period. It is reasonable to believe that the downscaled daily average air temperature may not
be more accurate than the data from the Klemen method for other locations (such as the valley
in Fig. 9) when the temperature is high.

The reasonable regional spatial distribution and interrelation of parameters are important in
the hydrological or ecological applications. The spatial pattern of the downscaled air temperature
data was determined only by the elevation, following the variation of DEM. Due to more physi-
cally based parameters being introduced into the simulation using the Klemen method, the
derived daily average temperature has a better spatial pattern and a better depiction of the dis-
tribution, especially at high temperatures.
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In addition, though the temperature lapse rate used in the spatial downscaling of GLDAS data
and in the process of translating the derived daily air temperature data to the height of 1.5 m
above the ground was based on previous study in this area using meteorological observations,
problems still exist. The temperature lapse rate in this study was fixed to the constant for the
whole study area while values with spatial variation are more reasonable, though it is difficult to
obtain the spatial distribution of lapse rate in the data sparse region. The temperature lapse rate is
more suitable to demonstrate the variation of temperature with elevation in large scale, so it may
be coarse to use the temperature lapse rate for the temperature transformation with only 0.5 m
height differences. A more accurate algorithm should be discussed in further study to eliminate
the height differences in the simulated daily average temperature and observations.

5.3 New Daily Average Temperature Data

The new data were generated from the combination of the two daily average air temperatures
discussed previously. Due to the discussion in Sec. 5.2, the daily average temperature based on
the Klemen method was adopted at high temperatures (>0°C) to keep its reasonable spatial
pattern and was replaced by the downscaled GLDAS temperature data (see Sec. 3.2) to increase
the accuracy at low temperatures (<0°C).

Fig. 9 Comparison of the results from three daily average temperature retrieval methods (take
the 275th day in 2005, for example). (a) Results from the Klemen method after temporal trans-
formation. (b) Downscaled GLDAS data. (c) Integrated daily average temperature data.
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At high temperatures, more details about the air temperature distribution are shown in
Figs. 9(a) and 9(c), reflecting the influence of various underlying surface conditions. A large
reservoir named Kapchagay exists in the study area downstream of the Ili River. The water sur-
face evaporation cools the air above the reservoir leading to temperatures (dark gray area under
the red rectangle) lower than the surrounding temperatures. A large area of the Gobi Desert lies
within the study area (the bright parts), where the temperature is obviously higher. Most of the
light gray areas in Figs. 9(a) and 9(c) cover well-developed vegetation. Many of these spatial
pattern details cannot be seen in the downscaled air temperature distribution [Fig. 9(b)].

At the low temperatures [the black areas in Fig. 9(a)], most of which appear on the top of the
mountain, the data from the Klemen method become less accurate. A useful spatial texture of the
air temperature can no longer be observed, and the accuracy of the simulated temperatures obvi-
ously decreases. The downscaled GLDAS air temperature data with the DEM texture were used.

In this study, the derived daily average air temperature based on the Klemen method was
simply replaced with the downscaled GLDAS data to achieve overall simulation accuracy.
In the future, weights may be introduced to integrate these two temperature data. Different
weight values according to certain rules will be assigned to the Klemen method data and
the downscaled GLDAS data to reflect the contributions from each, instead of simply replacing
one with another. In order to achieve better overall simulation accuracy, the coefficients used in
the Klemen method can also be recalibrated in a wider temperature span to make it more suitable
in different regions.

The temporal scale transformation equations used in this study were based on the NCAR/
NCEP reanalysis temperature data (details in Sec. 3.1.2). NCAR/NCEP provides four instant
values (UTC 00:00, 06:00, 12:00, and 18:00) each day. If the Terra passing time in certain
regions is close to any of the four times, the temporal scale transformation equations and
the daily average air temperature can be made in the same way. In this study, the time that sat-
ellite passes the study area varies from about local 10:00 a.m. to about local 12:00 a.m., is about
an hour before or after the UTC 06:00 (local time 11:00 a.m.). So that the local satellite passing
time is close to any of the four NCAR/NCEP time means the difference between them is <1h.
Figure 10 shows the regions around the world where the daily average air temperature deriving
method in this study can be used.

6 Conclusions

This study shows how the daily average air temperature at 2 m height can be obtained using
multisource spatial datasets over a large area, especially in data sparse regions. An integrated

Fig. 10 Regions (four gradient color regions) fit for the daily average air temperature retrieving
method in this study. The applicability of this method in other regions (with background blue) is
unverified.
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method using the combination of an advanced statistical model (the Klemen method) with tem-
poral transformation and spatial downscaling was proposed. Using the integrated method, air
temperature was estimated during the study period with an accuracy of ∼3K for two stations
in the Ili River basin in Central Asia; the portability of this method is also discussed.

The Klemen method provides a depiction of the spatial pattern and distribution of the air
temperature by incorporating parameters such as radiation, season, and underlying surface con-
ditions. At high temperatures, this method has high simulation accuracy. One disadvantage of
this approach is its less accurate simulation at low temperatures. The Klemen method was devel-
oped and validated using observations from meteorological stations in Germany, Slovenia, and
France between May and December 2005, when low temperatures (<0°C) seldom appear. The
statistical relationship between the air temperature and parameters developed under such con-
ditions does not fit for application at low temperatures. Further research can be carried out to
have the coefficients in the Klemen equations recalibrated in a wider temperature span to make
this method more suitable at low temperatures.

The downscaling procedure used in this study is based on the vertical temperature gradient.
The origin GLDAS temperature data with coarse spatial resolution were spatially detailed by
introducing DEM with higher resolution. Though this procedure does not suffer from inaccuracy
at low temperatures, it does not account for other factors influencing the air temperature. For
further applications, additional factors related to the season, radiation, and underlying surface
conditions should be taken into consideration during the downscaling.

The daily average temperature data obtained by the integrated method provided both suffi-
cient spatial distribution details and high simulation accuracy, which were especially valuable
because no field observations were used in the simulation. In this study, the integrated data
comprised data from the Klemen method after temporal transformation for high temperatures
and downscaled GLDAS data for low temperatures. More sophisticated methods can be devel-
oped by combining these two datasets in future applications.

According to the discussion, the regions where the satellite (Terra) passing time is close to
any of the four UTC times provided by the NCAR/NCEP, which is about one third of the total
global area, can use the method proposed in this study to estimate the daily average air temper-
ature. The feasibility of this method in other regions in the world needs further study.
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