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Abstract. Large uncertainties in calculating radiative forcings from aerosols due to their loca-
tion, loading, and types pose a great challenge to global climate modeling. Trying to improve
retrievals in a statistical manner normally requires detailed knowledge of uncertainty statistics
and bias due to possible error sources such as different measurement viewing geometries, instru-
ment calibration, and dynamically changing atmospheric and earth surface conditions. However,
a priori estimates of these error sources are not, in general, available. The use of a neural network
(NN) approach to compensate for biases and systematic errors of aerosol optical thickness (AOT)
from the Moderate Resolution Imaging Spectrometer (MODIS) operational retrieval algorithm is
explored. By utilizing the NN as an estimator, we can compensate against unknown sources of
errors, nonlinearity in the data sets, and the presence of non-normal distributions. In this study,
the highly accurate ground-based Aerosol Robotic Network (AERONET) measurements are
used as the ground truth (GT). Our results show that the adjusted AOT with NN has decreased
root mean square errors, improved correlations with GT data by 4% to 6%, and increased
the number of NN-adjusted data falling within the published expected error envelope by
∼10%. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JRS.7.073514]
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1 Introduction

Aerosol optical thickness (AOT) or aerosol optical depth (AOD) is a standard measure for atmos-
pheric aerosol loading from optical remote sensing measurements and as a result, AOD has
become a major atmospheric data product derived from various earth observation satellites,
such as the Moderate Resolution Imaging Spectroradiometer (MODIS), the Multiangle
Imaging Spectro-Radiometer (MISR), the Sea-viewing Wide Field-of-view Sensor (SeaWiFS),
the Ozone Monitoring Instrument (OMI), and many others.1 These remote-sensing satellites
obtain geolocated and calibrated radiances as Level 1B data, which are then input into complex
retrieval algorithms to derive the corresponding AOD (Level 2) data products. Unfortunately,
differences in the retrieval algorithms and/or in the instrument capabilities can introduce biases
leading to different AOD values. For instance, the MODIS Dark Target Algorithm has some
difficulties computing AOD in parts of its swath over dark water due to sun glint,2 whereas
MISR is able to retrieve AOD under these conditions because of its off-nadir cameras.3

Even in regions where different algorithms are valid, different AOD values over the same region
can occur through different algorithms (e.g., MODIS Dark Target Algorithm versus MODIS
Deep Blue Algorithm) from the same satellite observational scene.

Other factors which can cause inconsistencies among various AOD data sets may be due to:
(a) differences in cloud masking; (b) treatment of surface boundary conditions (such as wind
velocities, temperature, specific humidity, etc.) at the surface of the ocean or land; and
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(c) assumptions about component aerosol microphysical properties, as explained in Refs. 1–4.
Additional factors include instrument calibration,1,5 improper assumptions for the key
elements used in the algorithms, such as aerosol type and size distribution, and sampling
differences among the instruments.1,3,6

Theneed to treat aerosolvariability inaconsistentandrealisticway isaddressed inmanystudies.
For example, there have been several attempts to cross-calibrate radiances and then apply the same
aerosol retrieval algorithm tomultisensor data, but thesemostly concentrated on selected regions7,8

or on a single scene.9 Zhang and Reid10 analyzed AOD biases over oceans using Aerosol Robotic
Network (AERONET) to develop specific empirical corrections and quality assurance procedures
and integrate them into the operational data assimilation system. Kinne et al.11 proposed to rank
aerosol measurements by different sensors and AERONET, but they compared only mean AOD
values for different regions and seasons without using other statistical methods.

Determination of bias in AOD is rather problematic, due to its unknown sources of errors,
nonlinearity in the dataset itself, and the presence of non-normal distributions. Therefore, com-
monly used linear methods may not be suitable to represent the aerosol characteristics. A power-
ful approach to deal with these nonideal cases is to utilize a nonparametric approach where all the
statistical properties of the retrieved aerosol quantity can be taken into consideration. In this
study, we used a neural network (NN) as the mathematical estimator. This approach allows
us to reduce (i.e., compensate for) different types of sensor and algorithm retrieval biases without
the requirement of knowing the source of the systematic error in advance.12,13

The NN used for our purpose is a supervised learning algorithm defined as an application in
which training data comprises examples of the input vectors along with their corresponding
target vectors. If the desired output consists of one or more continuous variables, then the
task is called NN regression.12 This is the meaning for the term NN used in the remainder
of this article.

Neural networks have been used for many different earth science applications. Examples
include retrieval of land surface reflectance14 and retrieval of precipitation frommicrowave obser-
vations.15 In addition, direct calculation of AOD values and properties using radiance data from
MODIS is described in Refs. 16 and 17. Das et al.17 applied the AOD prediction model by con-
sidering an active learning–based data collection method, which facilitated the learning of a suf-
ficiently accurate AOD prediction model using a minimal set of labeled training data by querying
the labels of only the most informative data points. Improvement in the accuracy of AOD values
using data mining techniques was also studied by Han et al.18 Cazorla et al.19 applied three
NN-based models using radial bases function networks to estimate the value of AOD at three
different wavelengths using the radiance over the principal plane of the sky images from a cali-
brated sky imager. Although these studies concentrated on inputting radiance (Level 1B), Lary
et al.20 applied NN directly to retrieved AOD on the basis of AERONET data. Note that NN was
used in Lary et al. to adjust and/or validate the biases forMODISAOD thatwere already calculated
using the physical model algorithm. Although Ref. 20 introduces valuable insight to the bias
adjustment problem, it uses a small number of data points during the NN training process
(7543 for MODIS-Aqua and 13,034 for MODIS-Terra) which affects the assessment of the per-
formance results. In our study, we improve both quality and volume of the training data set by
using ∼300;000 data points while also considering land and ocean bias adjustments separately.

In order to use the NN method, the first step is to organize the data set into a usable form and
to select the correct variables that contribute the most relevant information for the estimation
process. In this work, we use highly accurate and quality-assured AERONET measurements
as the ground truth (GT).21 AERONET measurements provide for one of the most precise
and accurate aerosol datasets available.22 As a result, AERONET data are especially suitable
for validation purposes and have been used to evaluate MODIS,2,4,23 MISR,3 and other aerosol
data sets from space-based remote sensing. In applying the NN method, it is crucial to have
proper training data that well represent past experiences. In this study, the training data are com-
posed only of data possessing collocation between ground stations and satellites. For this pur-
pose, the Multisensor Aerosol Products Sampling System (MAPSS) is used.24 This system
consistently samples aerosol products from multiple space-borne sensors such as MODIS-
Terra, MODIS-Aqua, MISR, Polarization and Directionality of the Earth’s Reflectances
(POLDER), OMI, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and SeaWiFS

Albayrak et al.: Global bias adjustment for MODIS aerosol optical thickness using neural network

Journal of Applied Remote Sensing 073514-2 Vol. 7, 2013



and collocates them with ground AERONET stations over uniform 55-km diameter ground areas
that are centered on AERONET stations. For each extracted sample, MAPSS calculates a set of
spatial statistics including mean, median, standard deviation, direction and rate of spatial varia-
tion, and spatial correlation coefficient. In the MAPPS database, MODIS products come with a
QA flag (with discrete values of 0, 1, 2, or 3) over land and over ocean. This flag is a byproduct
of the MODIS retrieval algorithm and it indicates how confident the algorithm is in a particular
retrieved result. In MAPSS, mode of this flag over the sampled area is calculated.23 Furthermore,
MAPSS identifies AERONET data measured within 30 min of the overpass time of each space-
borne data sample and calculates a corresponding set of temporal statistics. The assumption here
is that since air masses are in constant movement, an aerosol plume observed byMODIS over the
55-km sampling circle will also be observed by AERONET during the 1-h sampling period.23 In
this way, MAPSS enables direct cross characterization and comparative analysis between space-
borne and ground-based aerosol observations.23

Implementation of the bias adjustment algorithm based on the NN approach results in the
removal of mean bias, reduction in variance in the satellite retrieved AOD data, and a better
handling of the non-Gaussian distributions. The protocol adopted for our NN estimator includes
(1) only the MAPSS database is used for the preparation of the training data set; (2) separate
training for each satellite and product—for example, the inclusion of MISR data as regressors for
MODIS training data is not allowed and ocean and land products are treated separately; and
(3) AERONET data is accepted to be the GT (i.e., target).

In this article, Sec. 2 provides a preliminary analysis of the data. Section 3 offers a detailed
description of the training data set and its member variables. It also includes an explanation of the
MAPSS database, and the collocation technique between satellites and land-based AERONET
stations. Section 4 summarizes the NN method using a back propagation algorithm and explains
how a NN approach is incorporated into the AeroStat project. Section 5 offers the results of the
experiments and the corresponding plots, and a short summary is provided in Sec. 6.

2 Preliminary Data Analysis and Reasoning for the Selection of
Methods

For many purposes, especially in multisensor intercomparison and data validation, it is essential
to look into the datasets before drawing statistical conclusions (e.g., Refs. 25 and 26). There are
frequent conditions that degrade the accuracy of a remotely sensed data product. Some of these
conditions may cause the algorithm that generates the product to fail, and hence there will be no
data, such as MODIS data in highly turbid water. Other conditions will make a data product less
accurate, even though the existence of adverse conditions may not always be apparent, like par-
tial cloud scenes. Thus, all remotely sensed data products must be evaluated with caution and
with respect to conditions that may cause them to be incomplete or inaccurate.

Aerosol properties are difficult to measure, especially for satellite-based instruments. To
evaluate the characteristics of our sampled aerosol data, Fig. 1 shows a general relationship
between the globally collocated AERONET Level 2 AOD and MODIS-Aqua AOD over
Land. In Fig. 1(a), box plots are considered. In order to form these box plots, the collocated
paired data for AERONET and MODIS-Aqua AOD are sorted in ascending order with a
0.03-interval bin size based on the AERONET values. This interval bin size was determined
based on experiments on the signal-to-noise (SNR) ratio of instruments25 and the number of
data pixels in each bin.

Statistical measures for each bin are indicated as the 50th percentile of each data bin as the box
width with the median line inside the box, if q0.75 and q0.25 represent 75th and 25th percentiles of
the data; the lower and upper whiskers (LW, UW) can be defined as in Eqs. (1) and (2).

UW ¼ min of

�
q0.75 þ 1.5 × IQR;
max fNg ;

(1)

LW ¼ max of

�
q0.25 − 1.5 × IQR;
min fNg ;

(2)

Albayrak et al.: Global bias adjustment for MODIS aerosol optical thickness using neural network

Journal of Applied Remote Sensing 073514-3 Vol. 7, 2013



where the interquartile range (IQR) is defined as

IQR ¼ q75 − q25: (3)

Any data point outside LW and UW is considered as an outlier in each bin and is indicated
with a (þ) marker in the box plot. It is apparent that AERONET AOD values have less spread
due to their instrument precision, whereas MODIS-Aqua Land AOD values spread more as
AOD increases. An outlier pattern (þ) in MODIS-Aqua Land takes over when AOD is <0.7.

Fig. 1 (a) Example of the box plots for binned AERONET AOD data (in black) and corresponding
Aqua-MODIS data (in red). In this plot, the y -axis is the possible AOD values, and the x -axis
includes the bin centers of the AOD data. Note that each bin center has its corresponding box
plot representing the data spread and median tendencies in that specific AOD interval (bin).
Furthermore, each box for the corresponding AERONET interval has 50% of the data. The interval
for the lower and higher whiskers (the bars) is determined where the 25th percentile and 75th
percentile of the data reside. Anything out of these ranges is considered to be an outlier.
(b) Quantile–quantile (Q-Q) plots at 550 nm, at the right of each group (i) MODIS-Aqua land versus
AERONET, (ii) MODIS-Aqua land residuals (AERONET minus the corresponding MODIS). Here,
the y -axis is the sample quantile and the x -axis is the theoretical quantile.
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Figure 1(a) also indicates that MODIS Land AOD agrees well with AERONETAOD in the AOD
range of 0.375 to 1.275, approximately.

The choice of cost function for NN may require normally distributed residuals between
AERONET and MODIS data. If we define the residual as in Eq. (4)

resðiÞ ¼ jMODISAODðiÞ − AERONETAODðiÞj; (4)

where i is the i’th collocated data, then we can apply quantile–quantile (Q-Q) plots for a dis-
tribution test. Basically the Q-Q plot provides a visual comparison of the sample quantiles to the
corresponding theoretical quantiles, where quantiles are defined as points taken at regular inter-
vals from the cumulative distribution function (CDF) of a random variable. If the theoretical
values of quantiles are the same as the sample quantiles, this means the samples have the
same distribution as that of the theoretical quantiles. In general, if the points in a Q-Q plot depart
from a straight line, then the assumed distribution is called into a question. For the normality test,
Q-Q plots are applied to AERONET and MODIS data and their residuals as shown in Fig. 1(b),
indicating the data for both AERONETand MODIS-Aqua AOD are not normally distributed and
show nonlinear behavior. Specifically, non-normal distribution effects can be observed from 0 to
0.01 AOD, in which most data are smaller than the SNR.25 A normal distribution is dominant
between ∼0.1 and ∼1.0 in AOD. Finally, a rapid changing variance behavior appears for AOD
values>1.0. This may be due to an insufficient number of data points in the sample. On the other
hand, residual behavior is close to a normal distribution except for a few very small and very high
AODs. This analysis again conveys that the nonlinear approach is appropriate for the bias adjust-
ment problem.

In order to handle growing variances in the data, sometimes log transformation may be
required. In our study, we have concluded that the results yield similar performance with and
without such a transformation; therefore, the log transformation option was discarded. In addi-
tion, we believe that applying log transformation might suppress some of the outliers that are
useful for our analysis.

The behavior of outliers, as described above, requires special attention. In Fig. 1(a), each box
plot shows the median, 75th and 25th quartiles above and below the median, and outliers. For
bins with AOD median values >1.0, outliers (as defined earlier) are considered distortions and
discarded from the bin. For bins with AOD median values of 1.0 or less, the outliers are retained
as they likely represent an actual pattern in the data set. The physical locations of the outliers are
shown in Fig. 2. These outlier geolocations are consistent with similar studies in Refs. 20 and 26.
For example, a larger number of outliers can be seen in the North African Sahel region, where
mixtures of smoke and dust may cause retrieval problems. These effects, however, have already
been considered in the NN regressor selection process. Therefore, we do not discard patterned
outliers in the training data set with representation nodes. Under these conditions, because of the
different patterns and tendencies, the choice of a nonlinear technique such as NN is a valid
approach to utilize for the solution of the problem.

3 Data Set Preparation

The proper use of the NN method requires processing original datasets into three blocks: (1) GT
(target); (2) input data to be adjusted; and (3) auxiliary data. A combination of these three blocks
was then created for four different cases: (a) MODIS-Aqua Land only; (b) MODIS-Aqua Ocean
only; (c) MODIS-Terra Land only; and (d) MODIS-Terra Ocean only. All the original data were
extracted from the MAPSS data system from the year 2000 until the end of 2011.

For the GT, we adopted the commonly used Level 2 quality assured AOD data collected by
the AERONET stations. Most of these stations measure AOD in different spectral bands centered
around the nominal wavelengths of 340, 380, 440, 670 nm, and others.24 Therefore, to facilitate
intercomparison with MODIS AOD, these data were interpolated to 550 nm using the quadratic
fit on log–log scale from all wavelengths, at a particular location and time.24,27

The auxiliary data were then identified for each individual algorithm. The auxiliary data
products considered for Land AOD at 550 nm collected from MODIS-Terra and MODIS-
Aqua are the following: solar zenith angle, solar azimuth angle, sensor zenith angle, sensor
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azimuth angle, scattering angle, Land AOD 470 nm, Land AOD 660 nm, Land TOA Reflectance
550 nm, Land TOA Reflectance 470 nm, Land TOA Reflectance 660 nm, Surface Reflectance
470 nm, Surface Reflectance 2100 nm, Cloud Fraction over Land, and QA over Land.

The auxiliary data for Ocean AOD at 550 nm collected from MODIS-Terra and MODIS-
Aqua are the following: solar zenith angle, solar azimuth angle, sensor zenith angle, sensor azi-
muth angle, scattering angle, Ocean AOD 470 nm, Ocean AOD 660 nm, Ocean AOD 870 nm,
Ocean TOA reflectance 550 nm, Ocean TOA reflectance 470 nm, Ocean TOA reflectance
660 nm, Cloud Fraction over Ocean, and QA over Ocean.

For each product, these variables are collected in a matrix as defined in Eq. (5):

0
B@

y1 x11 x12 : : : x1n
y2 x21 x22 : : : x2n
: : : : : : : : : : : : : : :
yk xk1 xk2 : : : xkn

1
CA; (5)

where xk1 denotes the AOD at 550 nm, xknðn>1Þ denotes the auxiliary variables, yn is the ground-
truth (AERONET AOD interpolated at 550 nm), k is the number of data points, and n is the
dimension of each feature vector. A feature vector can be described as a n × 1 array that encodes
the n features (or measurements of an object) in a training dataset. Mathematically, a numerical
feature vector ~X is given by Eq. (6):

~X ¼ ðx11; x12; x13; : : : :; x1nÞ; (6)

where n is the total number of features. In this case, each feature can be described as an inde-
pendent variable, also known as a regressor. The total number of data points collected from the
MAPSS database (collocated with MODIS-Terra and Aqua during 2000 to 2011) is summarized
in Table 1.

Once the dataset is ready, the next step is to apply the NN method. The following section
describes this method, including network topology and optimization of the learning process. In
addition, different phases of the operational implementation are summarized.

Fig. 2 Global locations of the outliers. Larger circles indicate more outliers in that specific location.
(a) MODIS-Aqua Land; (b) MODIS-Aqua Ocean; (c) MODIS-Terra Land; (d) MODIS-Terra Ocean.
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4 Methods: NN and Back Propagation Algorithm

NNs are nonparametric function approximators that are used to learn input–output mappings.
Each problem solved with NNs requires two main components: a network architecture and train-
ing data where known input and corresponding output data vectors are provided. In this work, the
NN architecture is based on feed-forward neural networks (FNN).13 Each FNN contains four
main components: input vectors ~p, transfer function f, weights and biases ~W, and output vectors
~a, as described in Eq. (7):

a
→ ¼ fðWp

→ þ bÞ. (7)

One of the important concepts in using NN is the learning rule (LR) or training algorithm,
which is a procedure for modifying the weights and biases of a network in order to move the
network outputs closer to the target. The purpose of the LR is to train the network to perform a
task. In our case, the LR is provided as a training set of data points ½½p1; t1�; ½p2; t2�� where ~p is
an input to the network (e.g., MODIS AOD values) and ~t is the corresponding correct output
(e.g., matching AERONETAOD values). As the inputs are applied to the network, the network
outputs are compared to the targets. The LR is then applied to derive the coefficients that are used
to adjust the weights and biases of the network. In other words, in Eq. (7), weight matrix ~W and
input vector ~p are optimized in such a way that the error (to a certain extent) is minimized
between ~a and ~t.13

In terms of an operational implementation perspective, the NN approach involves two phases,
a training phase (offline) and an estimation phase (online) as depicted in Fig. 3. The offline
process is mainly for training data processing (shown in Fig. 3, left panel). It has two main
components.

Component A of the offline process is the training data set preparation from the MAPSS data
base. In this step, data are retrieved from original MAPSS ASCII files with corresponding regres-
sors, creating information matrices with time labels and location information. Then the data are
transformed to a shape where the NNmodule can accept for further process. Finally, the prepared
matrices are saved for later use.

Component B is the training process. The shaped data from step A is randomly separated into
90% training and 10% testing blocks. Training data is processed using Feed-Forward Neural
Network for Python (FFNET) software28 with a given number of nodes and hidden layers.

The overall NN algorithm can be described as the following: (1) network architecture: feed-
forward (no cycles); (2) optimization algorithm: back propagation; (3) hidden layers: one; and
(4) nodes: 60 to 100 depending on the data set in consideration (land, ocean).

In order to use the data set properly, all the regressors (i.e., auxiliary data) have to be present
at a specific data point that needs to be adjusted. If this is not the case, then that data point is
dropped. Finally, the NN coefficients are obtained from the 90% training blocks and are saved
for comparison and utilization by the online process. The 10% testing blocks are used to evaluate
the NN performance (over fitting, etc.). Table 2 lists the details of data volumes for training and
testing before and after data elimination.

Table 1 Total number of raw data points collected from Multisensor Aerosol Products Sampling
System (MAPSS) database during 2000 to 2011 and 2002 to 2011 for Terra and Aqua Moderate
Resolution Imaging Spectrometer (MODIS) instruments, respectively. Note: Each data point
includes multiple regressors as described in Eq. (2).

Number of data

Aqua MODIS Ocean 28,567

Aqua MODIS Land 104,202

Terra MODIS Ocean 31,851

Terra MODIS Land 128,415
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In this work, the NN is also implemented within the framework of the Giovanni system29,30 to
provide on-the-fly bias estimation/adjustment (http://giovanni.gsfc.nasa.gov/aerostat/) using
trained data coefficients (provided from the offline phase). The schematic diagram is shown
in the right panel of Fig. 3. There are three main components for the online phase:

• Interface to AeroStat data retrieval sources: here, the data are obtained with given argu-
ments from the data files (in netCDF). These arguments are also used for the selection of
NN coefficients that are ingested into AEROSTAT online processing module representing
four different cases: (1) MODIS-Aqua Ocean, (2) MODIS-Aqua Land, (3) MODIS-Terra
Ocean, and (4) MODIS-Terra Land. According to the user’s request, one of these four
cases is chosen and applied to the raw data.

• Preparation of data: this step retrieves the data along with regressors from data files, elim-
inates fill values, and creates the formatted matrices for AOD adjustment.

Calculation of adjusted AOD values: the created matrices are sent to the module to obtain bias
adjusted AOD values. Adjusted AOD are appended to the same data files and returned. One

Fig. 3 Implementation of the NN in the operational sense. The left block depicts the offline process
where training is realized. The right side summarizes the data retrieval on the fly, estimation, and
prediction.

Table 2 Number of data points after separating each case, ocean and land, and filtering out as
defined below. To use each data point in neural network (NN) training, it is a requirement to have
all the regressors present. If a data point cannot satisfy this requirement, it is dropped and called
stage 1 filtering.

Total After filtering Training Testing

Aqua MODIS Ocean 27,434 27,349 24,615 2,734

Aqua MODIS Land 100,465 96,196 86,577 9,619

Terra MODIS Ocean 30,716 30,622 27,560 3,062

Terra MODIS Land 123,946 118,926 107,034 11,892
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important issue for NN training is the selection of the regressors. We understand that the selec-
tion of regressors is not a straightforward process because of the dynamically changing char-
acteristics of atmospheric variables and it requires special attention. We use expert opinions to
design a brute force approach where multiple NN experiments are performed for different set-
tings of regressors and compared to GT data. For training purposes, the best combinations of
regressors resulting from our trials are considered.

5 Experiments and Results

We evaluated the NN adjustment on four AOD retrieval cases: MODIS-Terra Land, MODIS-
Terra Ocean, MODIS-Aqua Land, and MODIS-Aqua Ocean, globally collocated with
AERONET AOD in time and space. The first step in investigating the relationship between
any two independent variables is to put the two variables on the scatter plot. For example,
Figs. 4(a) and 4(b) represent the scatter plot for MODIS-Aqua Ocean AOD, and Figs. 4(c)
and 4(d) represent the Land AOD with respect to collocated AERONET AOD. Additional stat-
istical measures [1∶1 (red line), linear regression (black line), the expected error (EE) bounds
(red dotted lines), and data number density distribution (color contours)] are also provided. The
EE bounds contain the mean and first standard deviation (66%) of all points. Levy et al.31 defined
the EE bounds for the MODIS Land case expressed in Eq. (8) and for the MODIS Ocean case
expressed in Eq. (9)

Land ¼ ∓ð0.15 × τ þ 0.05Þ (8)

Fig. 4 Scatter plots for MODIS-Aqua Aerosol Optical Depth at 550 nm where the first row is the
ocean, and the second is the land. The x -axis of each plot is the AERONET AOD and y -axis is the
MODIS data. (a and c) before NN adjustment; (b and d) after NN adjustment.
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and

Ocean ¼ ∓ð0.05 × τ þ 0.03Þ; (9)

where τ is AOD at 550 nm. In general, the larger the number of estimated AOD data within the
EE cone/envelope, the better the results are. Because of the high number of data, there is a
significant overlap among data points. Under these conditions, the scatter plots become less
informative for observing the relationships. Therefore, additional data number density distribu-
tions (kernel density estimates) are overplotted to show the majority of the data points appearing
for small AOD values (<0.2) and fewer data points appearing for larger AOD values.

The statistical measures of the four cases with NN adjustments are summarized in Table 3,
which also includes a comparison of the values obtained before and after applying the NN adjust-
ments. Overall, there is an improvement for all cases after applying NN adjustments, including
root mean square error reduction, increased correlation coefficients between the estimates and
GT, and the increased percentage of data within the EE error cone. However, notice that the
linear regression line for the adjusted MODIS AOD moved away from the 1:1 line, as compared
to the linear regression line for the original MODIS AOD. In combining with number density
contours, the different tendencies on the scatter plot can be seen for smaller AOD values com-
pared to the higher values. It should also be noted that high AOD values affect the regression
slope, while the majority of measurements are within the low AOD. Also the variance of the
MODIS AOD data on the global scale is much larger compared to the variance of the bias-
adjusted AOD estimations. It should be noted that the NN-estimated AOD values are slightly
smaller than reference AERONETAOD in contrast to the higher retrieved MODIS AOD. These
results are reported from the training data set. For the testing data, the results have similar or
slightly lesser performance, as expected. An example run for testing is summarized in Table 3.

To better evaluate the impact from NN-adjusted AOD, we can compare Figs. 1(a) to 5(a),
which overlays additional information from NN-adjusted AOD for MODIS-Aqua Land. The
improvements are obtained for most AOD bins when comparing NN estimates versus the origi-
nal MODIS data. As shown in Fig. 5(a), the variances in NN-adjusted AOD are smaller than
those of the original data sets. However, it should be noted that during extreme events such as
fires or volcanic eruptions, higher spreads with AOD retrieved values >2 could be expected,
causing larger variances for both the adjusted and unadjusted data. In any case, the NN-adjusted
variances still remain smaller than unadjusted ones. In terms of outliers, the NN-estimated values
for the outliers move closer to the AERONET in the AOD range between 0 and 1. Most of the
outliers >1.0 are smoothed out. Figure 5(b) shows that the normality of the residuals has been
improved after the NN adjustment. The improvements for other cases, including MODIS-Aqua

Table 3 Summary of the improvements from original data to NN approximation (A) Training (B)
Testing.

RMS Correlation coefficient Number of data in cone (%)

(A) Training

Aqua MODIS Ocean 0.13 to 0.091 0.87 to 0.94 58 to 70

Aqua MODIS Land 0.09 to 0.056 0.86 to 0.91 61 to 79

Terra MODIS Ocean 0.096 to 0.053 0.88 to 0.95 55 to 75

Terra MODIS Land 0.13 to 0.088 0.87 to 0.95 62 to 78

(B) Testing (one run)

Aqua MODIS Ocean 0.08 to 0.06 0.89 to 0.93 58 to 69

Aqua MODIS Land 0.13 to 0.09 0.85 to 0.91 62 to 79

Terra MODIS Ocean 0.14 to 0.07 0.79 to 0.92 56 to 72

Terra MODIS Land 0.12 to 0.09 0.87 to 0.92 62 to 77
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Ocean, MODIS-Terra Land, and MODIS-Terra Ocean, have shown similar results and thus are
not discussed here.

Since NN does its job on the basis of the given training data (whether correct or not), in order
to solve the problem of the large spread, extreme cases must be studied further, and new feature
vectors should be added to the training data that could better represent such events. Another
important factor that needs to be considered is the local effect. For example, Fig. 6 scatter
plots show unadjusted (right) and adjusted (left) AOD over the Mauna Loa station from
both AERONET and collocated MODIS-Aqua AOD. It can be observed that only 9.2% of
the data is within the EE range before the adjustment, and after the adjustment, this amount
increases to 38%. Although this seems a good improvement, we still need to understand the
reasons for the existence of the higher variance MODIS data and much higher MODIS-Aqua
estimated values compared to the AERONET station data. The analysis from Ristovski et al.16

Fig. 5 (a) MODIS-Aqua Land box plot for each bin with interval of 0.03. Black boxes are
AERONET, red boxes are the original AOD data, and blue boxes are the NN estimates.
(b) Q-Q plots at 550 nm, at the right of each group (i) MODIS-Aqua Land versus AERONET,
(ii) MODIS-Aqua Land residuals (AERONET minus the corresponding MODIS). Here, the
y -axis is the sample quantile, and the x -axis is the theoretical quantile.
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revealed that the Mauna Loa (Hawaii) and the Izana (Spain) sites are located at high elevations
and the behavior of the data is very different from other AERONET sites. This implies an exten-
sion of this work from global to regional cases in terms of data collection and reanalysis.

6 Summary

In this study, we have shown the success and some of the benefits of the bias adjustment on
MODIS AOD at 550 nm for both the Aqua and Terra MODIS instrument, using a nonparametric
NN method with one hidden layer. The biases for the MODIS retrieved AOD were based on the
quality-assured coincident AOD data from 537 AERONET stations. Because of the global nature
of the data set, the bias removal or improvements are considered in a global sense only.
Therefore, the global improvements do not necessary reflect the degree of improvement in
local or regional results for every particular station. The test results showed that in most of
the stations the bias-adjusted AOD was closer to the corresponding AERONET AOD but
did not perform uniformly well across all the stations. It should be noted that NN can only
be as successful as the provided data set. This implies that NN can be as good as the aerosol
retrieval algorithm provided feature vectors. For example, if an algorithm is not able to capture
extreme events, that means feature vectors that are representing such an event will not be rep-
resented in the training data set. This suggests that there is room for further improvement by
adding regional studies such as Mauna Loa and Izana and extreme events as feature vectors in the
training data sets.

Another shortcoming is the number of data that are considered for the oceans. It is well
known that there are not enough AERONET stations over open oceans. It is highly expected
that including data gathered from ship measurements (such as Marine Aerosol Network) will
increase the tractability of the estimations. In addition, the AERONET data are accepted as GT in
this study; however, it should be noted that AERONET has its own uncertainties. Furthermore,
additional information such as cross satellite information, surface albedo, surface wind, etc., can
be included in the regressors for further improvement of the results.

Finally, we used one hidden layer, a nonlinear activation function, and a sufficient number of
hidden neurons for the NN architecture. In summary, the advantages of the NN approach are
fourfold:12,32,33

1. Once the weights and biases are derived during the training process, the network operates
very quickly. This simplicity and speed greatly facilitates development and maintenance
and therefore reduces the cost of complex geophysical retrieval systems that process high
volumes of hyperspectral data.

2. The trained NNs are continuous and differentiable, which simplify error propagation and
therefore improve performance sensitivity analyses.

Fig. 6 Mauna Loa scatter plot for MODIS-Aqua aerosol optical depth at 550 nm. x -axis is the
AERONET AOD and y -axis is the MODIS data. Left column, before NN adjustment; right column,
after NN adjustment.
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3. NNs can approximate functions with arbitrarily high degrees of nonlinearity such as this
AOD problem, with a sufficient number of nodes and layers for geophysical parameter
retrievals/estimations.

4. The NN does not use a preprogrammed knowledge base and is suited to analyze complex
patterns.

There are still some potential disadvantages to the NN approach, as described below.

1. The training of NNs is a kind of statistical estimation often using algorithms that are
slow (1 to 1.5 h training time).

2. Although NN can handle noise, if it is considerable in a data sample, the generated
models tend to be overfitted in order to achieve good results.

3. The designer of NN has to fix the number of nodes and layers. Other factors the designer
has to consider are training tolerance, hidden neurons, initial weight distribution, and two
gradients of activation functions. This requires expert information by the designer on the
data instead of the physical system.

4. In particular, NN does not distinguish inputs by their significance, leaving the respon-
sibility to select significant inputs to a user.

5. If one adds new data or additional regressors, it is almost impossible to add this new
information to an existing network and therefore, retraining will be required.

Despite the potential shortcomings in the study we have demonstrated that the NN strategy
offers significant improvement to global estimates of AOD from MODIS and other instruments.
Such improvements can translate to overall accuracy improvement for global radiation budgets.
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