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Abstract. Depolarizing behavior is commonly observed in most natural samples. For this reason, optical tools
measuring the differences in depolarization response among spatially separated structures are highly useful in
a wide range of imaging applications for enhanced visualization of structures, target identification, etc.
One commonly used tool for depolarizing discrimination is the so-called depolarizing spaces. In this article,
we exploit the combined use of two depolarizing spaces, the indices of polarization purity (IPP) and
polarizance–reflection–transformation (PRT) spaces, to improve the capability of optical systems to identify
polarization–anisotropy depolarizers. The potential of these spaces to discriminate among different
depolarizers is first studied from a series of simulations by incoherently adding diattenuations or retarders,
with some control parameters emulating samples in nature. The simulated results demonstrate that the
proposed methods are capable of increasing differences among depolarizers beyond other well-known
techniques. Experimentally, validation is provided by conducting diverse phantom experiments of easy
interpretation and mimicking the stated simulations. As a useful application of our approach, we developed
a model able to retrieve intrinsic microscopic information of samples from macroscopic polarimetric
measurements. The proposed methods enable non-invasive, straightforward, macroscopic characterization
of depolarizing samples, and may be of interest for enhanced visualization of samples in multiple imaging
scenarios.
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1 Introduction
Optical methods based on the fundamental characteristics of
light are commonly applied in imaging applications in the
search for structure visualization larger than that provided by
standard intensity-based imaging systems. These methods
exploit some features of light–matter interactions such as
spectroscopic response, phase modification, and state of polari-
zation transformation. In this last scenario, polarimetry, a well-

established research field, provides a collection of methods and
tools allowing the retrieval of polarization information of sam-
ples to foster visualization of some of their characteristics. The
change in polarization information carried by light when inter-
acting with samples is related to some inherent physical proper-
ties of the evaluated matter, such as dichroism, birefringence,
and depolarization. By means of polarimetric techniques, these
physical properties of samples can be obtained in a non-invasive
and non-destructive way,1 which significantly increases the
possibility of identifying the samples that were unidentifiable.

On the one hand, polarimetric methods analyzing the dichroic
or birefringent response of samples are well-established in the
literature.2 For instance, in the framework of bio-photonics, the
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birefringent characteristic of samples can be used to differentiate
between healthy and cancerous tissues,3 as well as to distinguish
between elastic and collagen fibers in a rabbit aortic wall.4

Besides, with the assistance of the diattenuation, brain regions
can be distinguished from other neighboring tissues.5

On the other hand, methods studying depolarization have
proved their major contribution to imaging applications. In fact,
a widespread number of samples in nature present some kind of
depolarizing behavior when interacting with polarized light, as
is the case, for instance, of gases in the atmosphere, rough sur-
faces, plant samples, and animal tissues, among others. For this
reason, imaging methods based on depolarizing analysis are
crucial to enhance the visualization of samples consisting of
multiple structures presenting different spatial depolarizing
responses. In this framework, optical methods for depolarizing
sample visualization are nowadays of importance in many
areas, such as remote sensing,6,7 astronomy,8 plant imaging9 and
pathology detection in vegetal tissues,10 three-dimensional (3D)
graphics simulation,11 self-driving cars integrated imaging
sensors,12,13 environmental studies,14 material characterization
for industry,15–17 and biomedical applications,18–20 for cancer
detection in different human and animal tissues21,22 and tissue
recognition.23 Furthermore, the investigations on generation,24,25

transmission,26–28 detection,29,30 regulation,31,32 and processing33–39

of polarization information have deepened continuously.
Because of the above-stated interest in polarimetric (includ-

ing depolarization) means in the analysis of samples, there is
a continuous effort in developing polarimetric tools to foster
polarimetric-based imaging methods state of art. In this frame-
work, most advanced polarimetric methods are based on the
experimental measurement, using polarimeters and the ulterior
data analysis, of the Mueller matrix (MM) of samples. The MM
is a 4 × 4 real matrix that encodes the polarimetric features of
samples and is able to completely describe the polarimetric in-
teraction between light and samples.40 However, the 16 MM raw
elements are complicated to interpret and cannot provide an in-
tuitive link to the optical properties and structure of the samples
described byMM. For this reason, a full field of study deals with
MM decompositions and analysis,41–46 deriving a series of physi-
cal observables that can be connected with specific polarimetric
characteristics of samples. Importantly, these polarimetric ob-
servables have already provided their usefulness for imaging
and automatic classification proposes.47,48

Besides, these polarimetric observables are interdependent
and can form related polarization spaces, which further empha-
size the visualization of depolarizers and data interpretation40

and can be used as a criterion to implement pseudo-colored ap-
proaches for samples enhanced visualization.10,19 Among these,
some spaces are devised to specifically exploit depolarizing in-
formation of samples, the so-called depolarizing spaces, and a
few of them have been proposed in the literature.49 Generally,
depolarizing spaces can be divided into two categories. In par-
ticular, the first category consists of the depolarizing spaces
formed by the polarimetric observables that derive from the
MM, such as components of purity space.40 The second category
consists of the depolarizing spaces formed by the polarimetric
observables that are calculated from the eigenvalues of the
H matrix of MM, such as λ space and PI − PΔ space.50,51

Note that the information represented by the depolarizing spaces
from such two categories is completed for each by the other.
Nowadays, depolarizing observables, belonging to the above-
stated and other existing depolarizing spaces, are already being

used in applications; for instance, observables of λ space are
implemented for biological tissue identification,19 and the
indices of polarimetric purity (IPPs), or the polarization entropy
(EM) and depolarizing power (DM), are employed to analyze
dispersed systems.52,53

Importantly, from all those depolarizing spaces, the so-called
IPP space35 is especially interesting, as it maximizes the
associated volume, which in turn leads to a larger distance
between different depolarizers, this being useful, for instance,
for sample discrimination and classificatory proposes. As an
example, it has been already proved how the IPP space arises
as an ideal framework for the study of biological samples.19,20

Recently, a new depolarizing space was proposed in the litera-
ture, the polarizance–reflection–transformation (PRT) space,54

with the idea of fostering some physical properties associated
with depolarizers. It has been proven that the PRT space has
significant superiority in distinguishing among different pure
polarization systems. Moreover, for depolarizing samples, the
polarimetric observable R in PRT space is able to identify the
depolarization origin.

In this paper, we demonstrate how observables associated
with depolarizing spaces can infer inherent information of
sample unitary elements generating depolarization. To achieve
this aim, we combine the information of two depolarizing
spaces: the IPP and the PRT spaces. As discussed in this paper,
the selection of these two spaces is not arbitrary; we chose them
because their combined information led to a complete descrip-
tion of polarization–anisotropy depolarization present in sam-
ples. In particular, previous studies demonstrate that the IPP
space shows its greater discriminatory capacity.35,49 In this study,
we use IPPs as a starting point because they have been described
in the current state of the art as the most suitable space for depo-
larization in terms of volume (hence, for spatially separating
depolarizers) as well as for distinguishing among different depo-
larizers. In addition, as demonstrated throughout this work, the
PRT space has a greater discriminatory capacity than the IPP
space for certain types of depolarizing samples, so we propose
the combined use of these two spaces for an optimal description
of depolarizing samples. Note that polarization–anisotropy
depolarization relates to polarimetric anisotropies (dichroism
and/or birefringence anisotropies) within inherent microscopic
unitary elements in samples. Under this scenario, we show how
the IPP–PRT spaces-based method here proposed can provide
fundamental information on the structures in samples respon-
sible for generating depolarization. Importantly, the proposed
method obtains such relevant information from the macroscopic
MM of samples, and thus, the sample description is obtained
without the necessity of using microscopic optical systems.
In addition, it can also be implemented non-invasively and in
real time using an adequate polarimeter. In summary, in this
work, we present the possibility of using depolarization spaces
to obtain inherent physical characteristics of depolarizing
samples via macroscopic measurements. To achieve this, we
propose the combined use of IPP and PRT spaces, demonstrat-
ing that they provide an ideal framework for the description of
anisotropic depolarizers

The outline of the present paper is as follows. In Sec. 2, we
review the theoretical fundamentals required to describe the pro-
posed method: the IPP (Sec. 2.1) and the PRT (Sec. 2.2) spaces.
Afterward, in Sec. 3.1, we show how to combine the informa-
tion of such spaces to understand the physical characteristics of
depolarizing samples. To do so, we simulate a huge number of
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polarization–anisotropy depolarizers by incoherently adding a
series of pure elements (diattenuators and retarders) with some
control parameters as the orientation or the dispersion of the
elements in the summation, as well as their main values (diatten-
uation and retardance values). This simple model for simulated
depolarizer generation tries to mimic scenarios found in real
samples, as could be the case of vegetal (e.g., cell walls rich
in cellulose, which is a dichroic organic compound) or animal
tissues (e.g., rich in collagen fibers, which are birefringent com-
pounds). Next, this collection of simulated depolarizers is rep-
resented in the IPP and PRT spaces to connect physical meaning
with the raw contents of the sample MM. Later on, the discus-
sion presented in Sec. 3.1 is experimentally validated in Sec. 3.2
by constructing depolarizers from experimentally measured,
with a complete imaging polarimeter, and MMs of pure polari-
metric elements (diattenuators and retarders) with different con-
trol parameters. An excellent agreement is obtained between
simulations and experimental data, providing strong evidence
of the proposed approach suitability. Then, in Sec. 3.3, we pro-
pose a practical application of the provided methods, by provid-
ing a new method, based on PRT space–associated observables,
able to obtain inherent information of depolarizing units through
correlation analysis between structural information and polari-
metric observables. Finally, the main conclusions of the work
are provided in Sec. 4, where we highlight the applicability
of the method to readily infer information from samples without
a priori knowledge and by means of a non-invasive and macro-
scopic way.

2 Materials and Methods
In this section, we provide a description of the two depolarizing
spaces selected to implement the subsequent approach presented
in Sec. 3. In particular, the IPP55 and the PRT54 spaces are de-
tailed. We choose to use the IPP space as a framework for sam-
ple analysis as it has been proved that it is an ideal candidate for
dealing with depolarizing samples. In addition, the information
provided by the IPP space is complemented by the PRT space,
as it provides, as will be proved in Sec. 3, complementary in-
formation of samples, the combined use of both spaces leading
to a complete description of polarization–anisotropy depolariz-
ing samples.

2.1 IPP Space and P1P2 Space

To describe the polarimetric characteristics of light and matter,
the Stokes–MM formalism16 is employed as our mathematical
framework. In this framework, the state of polarization (SoP) of
light is represented by a four-element vector called the Stokes
vector, whereas the interaction between the light and samples
can be represented by a 16-element real matrix called the
MM with the following form:

M ¼

2
664
m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

3
775: (1)

In theory, MM elements contain information on all the po-
larimetric characteristics related to the physical properties of the
samples. Furthermore, except for some polarimetric character-
istics intuitively expressed by elements in MMs, such as diatten-
uation and polarizance that can be directly calculated from

MM elements, other useful polarimetric characteristics are
codified within the MM elements without direct identification.
Therefore, it can be useful to deeply analyze MMs for extracting
complete polarimetric characteristics of the sample, such as
retardance or depolarizing properties. To do so, several ap-
proaches for the decomposition of MMs have been proposed.56,57

For instance, parallel decomposition focuses on the study of
the depolarizing properties of samples, this decomposition
considers a depolarized MM as a convex sum of up to four non-
depolarizing MM,16 which means that a depolarizing sample can
be considered as an incoherent addition of non-depolarization
samples whose weights equal the eigenvalues of the covariance
matrix H of MMs, represented as λ0, λ1, λ2, and λ3.

40

Based on such coefficients, there are several eigenvalue-based
polarimetric parameters derived to measure the depolarization of
given samples. In particular, the so-called IPP parameters35

describe the polarimetric randomness introduced by samples to
incident light, and they have demonstrated their potential for dis-
crimination and contrast enhancement in tissue samples, showing
a better performance than other referential depolarization metrics
such as the overall depolarization index (PΔ) and other eigen-
value-based metrics.49 The IPP consists of three polarimetric
indices, namely, P1, P2, and P3, respectively defined as

P1 ¼ ðλ0 − λ1Þ∕trH; (2)

P2 ¼ ½ðλ0 − λ2Þ þ ðλ1 − λ2Þ�∕trH; (3)

P3 ¼ ½ðλ0 − λ3Þ þ ðλ1 − λ3Þ þ ðλ2 − λ3Þ�∕trH: (4)

Note that all of them range from 0 to 1.
By IPP, the overall depolarization index can be calculated as

P2
ΔðPurityÞ ¼ 2P2

1∕3þ 2P2
2∕9þ P2

3∕9: (5)

Due to the restrictions on the coefficients
(λ0 ≥ λ1 ≥ λ2 ≥ λ3 ≥ 0 and λ0 þ λ1 þ λ2 þ λ3 ¼ 1), the values
of IPP follow the inequalities

0 ≤ P1 ≤ P2 ≤ P3 ≤ 1; (6)

where P1 ¼ P2 ¼ P3 ¼ 1 represents pure nondepolarizing sys-
tems, and P1 ¼ P2 ¼ P3 ¼ 0 corresponds to ideal depolarizers.
Furthermore, IPP can relate to well-known depolarizers.
Importantly, depolarization is produced by complex light–
matter interaction processes, but in general, it is regarded as
resulting from the randomness induced in the polarization of
the incident SoPs when interacting with the samples. Recently,
it has been reported that the IPP parameters provide information
on two different sources of depolarization induced by samples.55

In this sense, P1 and P2 parameters have information on
polarization–anisotropy depolarization, where the depolariza-
tion is originated by polarimetric anisotropies presenting in the
elemental units comprising the samples (such as retarder and
diattenuator units). In contrast, P3 provides the polarization–
isotropy depolarization content of samples (originated by
polarization–isotropy structures leading to light scattering proc-
esses), with limit cases of P3 ¼ 1 for samples without showing
polarization–isotropy depolarization behavior and P3 ¼ 0 for
samples whose depolarizing response is fully governed by
polarization–isotropy depolarization. Note that polarization–
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isotropy depolarization contribution describes the fraction of
polarized light fully depolarized by samples (independently
of the input state of polarization), in which any polarimetric
sample feature is lost.

What is more, the IPPs are also useful for implementing a
physical geometrical space, namely, IPP space, based on the
dependence among P1; P2, and P3.

40 As shown in Fig. 1, the
IPP space is a 3D geometrical space with three coordinate axes
as P1; P2, and P3 along with the X; Y, and Z directions, respec-
tively.

The IPP space contains all the physically realizable depolar-
izers where each point represents a depolarizer with unique
depolarization characteristics. Generally, as closer the depolar-
izer to point O in Fig. 1, the lower the value of P3 and the larger
the polarization–isotropy depolarization content. In turn, the
shaded surface in Fig. 1, corresponding to P3 ¼ 1, includes
all possible pure polarization–anisotropy depolarizers. As
limit cases, non-depolarizing samples are characterized by
P1 ¼ P2 ¼ P3 ¼ 1 (point C). Conversely, samples with
P1 ¼ P2 ¼ P3 ¼ 0 are regarded as ideal depolarizers, and they
are located at point O. Last but not least, as discussed above, IPP
space is a suitable tool to distinguish polarization–anisotropy
depolarizers from polarization–isotropy depolarizers and to
estimate the fraction of each depolarizing origin in arbitrary
depolarizers. However, it is important to emphasize here,
as it will be important in further sections, that the IPP space
cannot distinguish among different typologies of polarization–
anisotropy depolarizers, for instance, among those originated by
diattenuator or retarder unitary elements.

2.2 PRT Space

In addition to IPP observables constituting the IPP space, there
are several important polarimetric observables with clear physi-
cal meaning derived from MMs. In this subsection, we focus on
reviewing those observables constituting the so-called PRT
space.54 We choose to include this space in the present study
because, as it will be proved in this paper, it is a perfect space
to complement the information of the IPP space in terms of de-
polarizing sample characterization. In the following, we derive
the observables associated with the PRT space.

The MM illustrated in Eq. (1) can be normalized by m00 and
expressed in its block form as16

M̂ ¼
�
1 DT

P m

�
; (7)

where ½:�T refers to a transpose of a matrix, P is the polarizance
vector, D is the diattenuation vector, andm is a submatrix of the
M̂. Besides, according to D, P, and m, the scalar diattenuation
(D), polarizance (P), and degree of spherical purity (PS) can be
derived.16 In addition, regarding each element in them individu-
ally, it demonstrated the relation between Stokes elements of
the incident and emergent beams. For instance, the diagonal
elements (m11; m22; andm33) intuitively characterize the direct
reflectivity or transmittance of the Stokes elements (Q, U,
and V) for the reflection or transmission scenario respectively
(hereafter, the reflectivity is used). Thus, they are extracted to
measure the direct reflectivity of different Stokes elements, and
then, the overall reflectivity of Stokes elements is defined as54

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

m2
ii

vuut ∕
ffiffiffi
3

p
: (8)

Besides, the rest elements (m12; m13; m21,m23; m31; andm32)
characterize the mutual transformations among the Stokes ele-
ments (Q, U, and V) from the incident beam to the emergent
beam. The overall transformation among the Stokes elements
is defined as54

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

12 þm2
13 þm2

21 þm2
23 þm2

31 þm2
32

q
∕

ffiffiffi
3

p
: (9)

Because the elements employed to define R and T originate
from m, both R and T have contributions from the birefringent
properties of the sample. Besides, the polarimetric PP derived
from D and P is able to characterize the dichroism of samples
(without retardance contribution)

PP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

10 þm2
20 þm2

30 þm2
01 þm2

02 þm2
03

q
∕

ffiffiffi
2

p
: (10)

These three polarimetric observables PP, R, and T contain all
elements of MM except the normalized m00, they being able to
represent all information of systems. In particular, PP, R, and T
can represent dichroism, reflectivity, and transformation of
Stokes elements, respectively. PS can be calculated from R
and T, leading the combination of R and T to represent the re-
tardance of systems. Furthermore, the combination of PP with R
and T can obtain PΔ representing the depolarization of systems.
More importantly, based on such polarimetric indices, a novel
3D polarimetric representation with clear physical interpreta-
tion, named PRT space, is constructed, where R, T, and PP var-
iables correspond to X, Y, and Z axes, respectively, as seen
in Fig. 2.

Like other depolarizing spaces described in the literature,
each location in the PRT space represents the characteristics
of different depolarizers. Moreover, due to the physical meaning
of the PRT-based observables, the space, surfaces, and even
lines in the PRT space can be associated with different polari-
metric sample classes. For instance, the points on the surface

Fig. 1 IPP space representation. The P1P2 (P3 ¼ 1) surface,
where the pure polarization–anisotropy depolarizers are repre-
sented, is shaded in the picture.
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ABCE represent non-depolarizing pure systems. Conversely,
point O represents the ideal depolarizers that always fully de-
polarize light, independently of the input state of polarization.
Except for the points at the locations above described, the rest of
the points in the PRT space represent non-ideal depolarizing
systems, i.e., depolarizers that introduce certain depolarization
at the exit light beam but the light is not fully depolarized for
some input SoP cases.

As above stated, any depolarizer can be considered a linear
combination of pure non-depolarizing systems, such as diatte-
nuators, retarders, or combinations of them.45 In the PRT space,
the depolarization originates from the combination of the de-
composed pure systems with various polarizance, reflection,
and transformation characteristics for the Stoke elements, which
induces polarization randomness to the incident beam.

Last but not least, according to the definition of the depolari-
zation index PΔ,

46 the PRT can be defined from the PP, R, and T
as

P2
ΔðPRTÞ ¼ 2P2

P∕3þ R2 þ T2: (11)

As a consequence, we can establish a connection between
IPP and PRT spaces through the PΔ metric by comparing
Eqs. (5) and (11):

2P2
1∕3þ 2P2

2∕9þ P2
3∕9 ¼ 2P2

P∕3þ R2 þ T2: (12)

In summary, both IPP and PRT spaces provide information
on depolarizers, but the provided information, even if being both
connected with the overall depolarization of samples (as pro-
vided by the connection of both spaces with PΔ), is organized
in different ways, leading to different description of the system
characteristics. On the one hand, the IPP measures the magni-
tude of randomness induced by samples to incident beams, re-
gardless of the specific polarization characteristics, and they are
able to discriminate between polarization–isotropy and polari-
zation–anisotropy depolarizers. On the other hand, the PRT
space highlights the physical characteristics of the sample in-
volved in the depolarizing process and, in particular, the overall
polarizance, reflectivity, and transformation between the input
and exiting Stokes elements. In other words, the IPP and PRT
spaces describe the depolarization of samples from different
physical (and complementary) perspectives.

3 Results and Discussion

3.1 Characterization of Different Depolarizers

In this section, we present a collection of simulations to provide
the potential of the combined use of the polarimetric observ-
ables associated with the IPP and PRT spaces to characterize
samples. Note that to the best of our knowledge, depolarizing
spaces are nowadays used to discriminate among depolariz-
ers,16,17,35 but here, we use these observables for the first time
to infer the physical inherent characteristics of samples inducing
depolarization.

In particular, we first provide in Sec. 3.1.1 the method and
conditions used to construct a full space of depolarizing simu-
lations, which represent the targets to be studied in the IPP and
PRT space frameworks. Then, in Sec. 3.1.2, we study the po-
tential of these spaces to discriminate between diattenuator-
based and retarder-based depolarizers. Finally, we analyze the
potential of these two spaces to infer inherent structural infor-
mation of one of these two depolarizers’ origin, i.e., for the
diattenuator-based depolarizer case (Sec. 3.1.3) and for the
retarder-based depolarizers case (Sec. 3.1.4)

3.1.1 Method and conditions for depolarizing simulations

According to the parallel decomposition theory,40 which states
that any physically realizable depolarizer can be implemented as
the incoherent addition of non-depolarizing polarimetric ele-
ments, we have simulated different depolarizers based on two
different inherent origins: (1) diattenuator-based depolarizers,
consisting of the incoherent addition of different linear diatte-
nuators, and (2) retarder-based depolarizers, consisting of the
incoherent addition of different retarders. Note that such result-
ing depolarizers belong to the polarization–anisotropy depolar-
izers class,41 which in turn represent a significant number of
samples existing in nature. Under this scenario, some control
parameters are presented in the conducted model: the number
N of elements in the summation; the orientation θ (correspond-
ing to the transmission axis and fast neutral axis for the diatte-
nuator-based and retarder-based cases, respectively) of each
element; the diattenuation, D, for the diattenuator case; and
the retardance, ϕ, for the retarder case, of each element.

For the diattenuator-based depolarizers simulations, we set
the number of elements in the summation as N ¼ 300 as a trade-
off between a large number N, representing real scenarios, and
an acceptable computation time. Afterward, the direction of
each diattenuator within the summation could be set arbitrarily
by generating random numbers. However, to mimic a scenario
closer to real samples in nature (as could be the case of a dis-
tribution of collagen fibers in tissues or cellulose in the vascular
tube of leaves), the directions of diattenuators were assigned to
follow a Gaussian distribution, so each orientation is given by
θmþ δ, where θm is the orientation mean value selected from
the range (0, π), and δ follows a Gaussian distribution with a
null mean and a given variance (σ2). Lastly, the diattenuation
value (D) of each diattenuator in the summation is changed from
0 to 1 with a customized step.

Similarly, for the retarder-based depolarizers simulations, the
number of retarders N was also set to 300, and the directions
assignation of such retarders was conducted in the same way
as in the previous diattenuator-based depolarizer case. In turn,
the retardance ϕ was employed to control the performance of
each retarder, which ranges from 0 to π. More information

Fig. 2 Solvable domain of the PRT space.
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on the simulated MMs can be found in Ref. 41. Such parameters
shown above for both retarder-based and diattenuator-based
depolarizers, determining the depolarization of depolarizers,
are named as microscopic parameters, in consideration of the
fact that they cannot be measured by a macroscopic polarimeter.

3.1.2 Retarder-based and diattenuator-based depolarizer
discrimination

As stated before, polarization–anisotropy depolarizers arise
from the incoherent addition of two types of unitary structures:
(a) dichroic materials (diattenuators) or (b) birefringent materi-
als (retarders). Thus, our first goal is to evaluate if the consid-
ered IPP and PRT spaces are able to discriminate between these
two depolarizer origins, without a priori information of the sam-
ple, and thus to infer information about the inherent structure of
depolarizers. To do so, we follow the simulation conditions de-
scribed in Sec. 3.1.1 to create a collection of diattenuator-based
and retarder-based depolarizers.

On the one hand, for the diattenuator-based depolarizers, the
mean orientation of diattenuators, θm, was set as to π∕3. Note
that we arbitrarily chose this mean orientation value as we real-
ized in simulations that results are independent of this param-
eter, this being logical as it just represents a unitary rotation of
the system, which does not modify the resultant polarimetric
characteristics. At this stage, the controlling parameters for im-
plementing different depolarizers remain the D coefficient and
the orientation variance σ2. To simulate a significant collection
of different depolarizers, the D coefficient was set as a 1 × 104

value array by taking values from 0 to 1 (coefficient range) with
a step of 10−4. In the same way, the orientation variance σ2 con-
sisted of 104 different elements by taking values from 0 (all di-
attenuators pointing in the same direction) to π∕2 (reasonable

maxima orientation variance if considering real samples) with
steps of π∕2 × 10−4. This scenario led to 104×104¼ 108 simu-
lations of different diattenuator-based depolarizers.

On the other hand, a significant collection of retarder-based
depolarizers was also constructed. The mean value for retarder
orientation was fixed at π∕3 by following the same criteria in the
previous case. Analogously to the previous case, the retarder
orientation variance σ2 was also set as an array of 104 elements
with values from 0 to π∕2 with steps of π∕2 × 10−4. Finally, the
retardance ϕ consisted of 104 elements by taking values from
0 to π with a step of π×10−4. Consequently, we also imple-
mented 108 simulations for retarder-based depolarizers.

Then, the IPP- and PRT-associated observable values (as de-
scribed in Sec. 2, P1; P2, and P3 for IPP and P, R, and T for PRT
spaces) were calculated for these 2 × 108 simulated depolarizers
(108 diattenuator-based depolarizers and 108 retarder-based
depolarizers), and the corresponding spatial points are repre-
sented in the IPP and PRT spaces in Figs. 3(a) and 3(b), respec-
tively. To provide another perspective to analyze the distribution
of such points, the plane of P3 ¼ 1 in IPP space and the plane of
T ¼ 0 in PRT space are illustrated in Figs. 3(c) and 3(d), respec-
tively. Note that the points representing diattenuator-based and
retarder-based depolarizers are colored in red and green, respec-
tively.

By analyzing the data represented in both spaces, we realize
that they present a certain potential to discriminate between
the origin of the simulated depolarizers (diattenuator-based or
retarder-based depolarizers). However, we see how the PRT
space is much more suitable for discriminating between these
two depolarizer origins than the IPP space. In particular,
although all simulated depolarizers are placed at the top surface
of the IPP space [P1P2 space for P3 ¼ 1; see Fig. 3(a)],

Fig. 3 Distributions of diattenuator-based (red color) depolarizers and retarder-based (green
color) depolarizers represented in the studied depolarizing spaces. (a) IPP space. (b) PRT space.
(c) Plane of P3 ¼ 1. (d) T ¼ 0 in the PRT space.
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independently of the physical origin (red and green data), the
discrimination is much more efficient using the PRT space be-
cause depolarizers are distributed all over the volume [Fig. 3(b)].
This plane restriction associated with the IPP space is well
understood if considering that we are dealing with polariza-
tion–anisotropy depolarizers, and thus, no contribution of
polarization–isotropy depolarization is present in the simulated
systems (i.e., only the P3 ¼ 1 is available, and this condition
makes the polarization–isotropy contribution equal to zero41).
This spatial limitation when representing polarization–
anisotropy depolarizers within the IPP space leads to an overlap
of data [see green–red overlapped region at the top surface of
IPP space in Fig. 3(c)] corresponding to depolarizers of different
origins (i.e., the overlap of red and green data in some cases). In
other words, the IPP space presents some ambiguities for certain
depolarizers. This scenario states that some different physical
systems, both diattenuator-based and retarder-based depolariz-
ers, may lead to the same depolarizer representation in the IPP
space, and this situation constitutes the lack of discrimination
potential when dealing with the IPP space.

In contrast to that, the PRT space arises as a suitable tool for
discriminating between diattenuator-based and retarder-based
depolarizers, providing complete description without ambiguity.
In particular, although retarder-based depolarizers are located at
the PP ¼ 0 plane [see green data in Fig. 3(b)], the diattenuator-
based depolarizers [red data in Fig. 3(b)] are located at the
rest of the PRT volume (they are distributed out of the plane
PP ¼ 0). This situation, providing a complete discrimination
between diattenuator-based and retarder-based depolarizers,
arises from the nature of the PRT space. In particular, as PP
observable deals with the dichroic behavior of samples, it
should be always zero when dealing with retardance origin, and
thus, retarder-based depolarizers are in this plane. Analogously,
diattenuator-based depolarizers should present certain non-zero
values for PP, so they must be out of the PP ¼ 0 plane. As a
consequence, the PRT space provides an ideal framework for
such diattenuation-retarder depolarizer discrimination. Note that
there exists only one point in the PRT space where the two
physical origins overlap [point PP ¼ 0, R ¼ 1, and T ¼ 0;
see Fig. 3(d)], and this is just the case where MM of the related
sample is diag(1, 1, 1, 1) (i.e., the identity matrix). This point
corresponds to systems with the ϕ and D values equal to 0 for
retarder-based and diattenuator-based depolarizers respectively,
but under this condition, they degenerate to be a polarization–
isotropy media without any polarization effect (non-polarimetric
system).

At this point, it is worth recalling that we selected the IPP
space from different depolarizing spaces proposed in the liter-
ature because it proved to be an excellent candidate for depo-
larizer discrimination.35 Thus, the results and discussion shown
in this subsection provide that the PRT space is an excellent
approach for depolarizing sample description, overcoming the
discriminatory performance of other existing alternatives in
terms of origin (dichroic-birefringent) characterization.

Note that the present work has focused on linear anisotropies
(diattenuator-based or retarder-based depolarizers) because they
represent important real scenarios; for instance, it is the case of
vegetal or animal tissues. In fact, animal tissues, rich in collagen
fibers, may give rise to retarder-based depolarizers, and vegetal
tissues, rich in cellulose, may give rise to diattenuation-based
depolarizers.20 However, other more complex depolarizing
scenarios may arise from mixtures of retarder and diattenuator

unitary elements. For readers interested in such cases, a discus-
sion about retarder-based and diattenuator-based depolarizers is
included in Sec. 4 in the Supplementary Material, where we
demonstrated that the proposed methods are also valid to dis-
criminate these situations, being especially relevant for such
purposes of PRT space.

As a final remark, we want to emphasize that when focusing
on a particular type of depolarizing origin (red or green data), we
see that different control parameters lead to different locations of
the resulting depolarizes at both the IPP and the PRT spaces. In
particular, different locations for diattenuator-based depolarizers
(red data) are associated with different orientations or deviations
of diattenuation or different diattenuation values, and in the
same vein, different locations for retarder-based depolarizers
(green data) are associated with different orientations or devia-
tions of the fast axis of the retarders or different retardance
values. Thus, the simulations in Fig. 3 indicate that such spaces
have the potential to discriminate among different internal
structures leading, on the one hand, to diattenuator-based depo-
larizers and, on the other hand, to retarder-based depolarizers.
The aim of the following subsections is to delve into this topic
with the aim of inferring more inherent information about depo-
larizers and thus characterize diattenuator-based depolarizers
(Sec. 3.1.3) and retarder-based depolarizers (Sec. 3.1.4).

3.1.3 Characterization of diattenuator-based depolarizers with
different structural characteristics

In this section, we study the suitability of the IPP- and PRT-
associated polarimetric observables to characterize depolarizers
with a common origin, that is, diattenuator-based depolarizers,
but with different inherent structural characteristics. To this aim,
we implement a collection of diattenuator-based depolarizer
simulations with different controlling parameter values. As in
the previous section, and by following the simulation conditions
described in Sec. 3.1.1, each generated depolarizer is composed
of the incoherent addition of N ¼ 300 linear diattenuators. The
D is set as an array of 104 elements uniformly distributed be-
tween [0, 1]. In addition, the occupied space of simulations is
increased by repeating the above simulation patterns for differ-
ent values of the standard deviation σ2 associated with the
Gaussian distribution of the diattenuator orientation. In particu-
lar, we use values of σ2 from 0 to 0.5π, with a step of 0.05π,
so 11 different cases are formed. Under this scenario,
104 × 11 ¼ 1.1 × 105 different diattenuator-based depolarizers
are simulated, represented in the PRT and IPP spaces in
Figs. 4(a) and 4(b), respectively.

Figure 4 illustrates the spatial distributions of simulated
diattenuator-based depolarizers at such spaces as a function
of different D and σ2 values, in which varying colored curves
correspond to diattenuator-based depolarizers with different
values of the parameter σ2 (provided in Fig. 4 legend). In other
words, each curve represents the depolarizers with the identical
σ2, at which different points represent the depolarizer with
varying D.

The corresponding distribution results demonstrate the cer-
tain ability of PRT and IPP spaces to distinguish among the
depolarizers with the same origin but different inherent struc-
tural characteristics. In particular, the represented depolarizers
occupy a vast volume in such spaces. In theory, the IPP and
PRT spaces are able to represent all depolarization systems,
and furthermore, each position in such spaces represents the
case with unique polarization characteristics. In addition to
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demonstrating the fact that depolarizers with different structural
characteristics represent unique physical properties, the vast
volume that the depolarizers occupy also implies the possibility
of being distinguished. In particular, in the IPP space, shown in
Fig. 4(b), the distances between the curves corresponding to
σ2 values smaller than 0.15π are significant, ensuring clear dis-
crimination among systems, but as σ2 increases, the correspond-
ing curves become closer, this situation becoming more critical
for curves related to values of σ2 bigger than 0.25π, where the
curves have become nearly indistinguishable. Conversely, the
PRT space shows a better performance in distinguishing among
lines representing depolarizers with different σ2. In particular,
the related lines have clearly different behaviors, especially
when σ2 is smaller than 0.35π (it is a common range in biologi-
cal tissues), which demonstrates the ability of PRT space to
identify different diattenuator-based depolarizers.

Comparing curves with different controlling parameters, we
realize that with the increase of σ2, the corresponding curves get
close to the plane (PP ¼ 0) in PRT space. Recall that in the cur-
rent study, the inherent elements being incoherently added to
create a diattenuator-based depolarizer, are pure diattenuators
with different orientations. As σ2 becomes larger, the orientation
dispersion of the inherent elements increases, decreasing the
overall diattenuation D for the resultant depolarizer (note that
as a larger number of orientations are considered more orthogo-
nal, systems cancel their diattenuation properties among them).
Therefore, the polarimetric observable PP arises as a nice indi-
cator of the dispersive distribution of internal units in a depo-
larizer. By taking profit of this correlation between PP and σ2,
we could explore the idea of implementing an analytical relation
describing the orientation dispersion characterized by σ2 as a
function of the observable PP. This situation is further studied
in Sec. 3.3. In addition, more details about the connection
between PP observable and σ2 can be consulted in the
Supplementary Material.

In summary, both such polarization spaces are certainly
capable of characterizing the diattenuator-based depolarizers
with different structural characteristics, and moreover, PRT
space shows significant superiorities over IPP space in several
tasks. On one hand, whereas all diattenuator-based depolarizers
fall on a fixed plane (P3 ¼ 1) in IPP space, PRT space illustrates
a 3D distribution with a big volume of all diattenuator-based
depolarizers, which leads to representing points of such depo-
larizers have bigger geometrical distance and less overlap in

PRT space. On the other hand, as stated in Sec. 2.2, unlike
IPP space only containing the amplitude of randomness, the
observables in PRT space have physical meaning, leading to
PRT space performing better in analyzing diattenuator-based
depolarizers. In particular, whereas IPP space cannot distinguish
among pure systems with different structures, PRT space can
identify the structure of pure systems.

3.1.4 Characterization of retarder-based depolarizers with
different structural characteristics

As a complement of Sec. 3.1.3, in this section, we study the
suitability of the IPP- and PRT-associated polarimetric observ-
ables to characterize depolarizers originated by the incoherent
addition of linear retarders, that is, retarder-based depolarizers.
To this aim, we implement a collection of retarder-based depo-
larizer simulations with different controlling parameter values.
For consistency with the previous sections, the generated depo-
larizers are composed of the incoherent addition of N ¼ 300
linear retarders, and the mean orientation is once again set to
π∕3 (recall that this last value is arbitrarily chosen because it
is not significant in terms of polarimetric performance of result-
ing depolarizers). In this case, the multiple retarder-based depo-
larizers are generated by properly setting the retardance (ϕ)
value for constituent retarders and the deviation value σ2 from
the mean orientation, which, as previously discussed, obeys the
Gaussian distribution. It means the physical properties of the
formed retarder-based depolarizers depend on the parameters
σ2 and ϕ. In particular, the retardance ϕ was set as an array of
11 elements by taking values from 0 to π with a step of 0.1π.
In addition, the neutral line orientation deviation σ2 of the con-
stituent retarders was set as an array of 104 elements by taking
values from 0 to π with a step of π×10−4. Note that the possible
combinations led to 1.1 × 105 simulated retarder-based depolar-
izers, which were represented, as shown in Fig. 5, at the RT
[Fig. 5(a)] and P1P2 [Fig. 5(b)] planes belonging to the PRT
and IPP spaces, respectively.

Note that we restrict the representation to corresponding
planes instead of the complete volume spaces because, as de-
scribed in Sec. 2, retarder-based depolarizers can only be con-
tained in such planes. Unlike diattenuator-based depolarizers
discussed above, the results in this section for retarder-based
depolarizers are arranged as different curves with varying ϕ.
Under this condition, the points at each cure represent the depo-
larizers with the same ϕ but different σ2.

Fig. 4 Representation of the simulated diattenuator-based depolarizers in different representation
spaces. (a) PRT space. (b) IPP space.
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It is worth noting that a case of ϕ ¼ 0 representing the units
within retarder-based depolarizer entirely lose the retardance.
Analogous to the case ofD ¼ 0 resulting in a diattenuator-based
depolarizer in a pure system, this case leads the retarder-based
depolarizer to degenerate to a polarization–isotropy media,
which is represented by a single point (P1 ¼ 1, P2 ¼ 1 in
P1P2 space, R ¼ 1, T ¼ 0 in RT space). According to the 10
values of retardance ϕ selected [see legend in Figs. 5(a) and
5(b)], we represent 10 different curves where each point of
a particular curve represents a different value of σ2. We see
how the observable R presents an important discriminatory
capability to classify different retarder-based depolarizers with
different retardance ϕ values within a range of ϕ = (0.1π and
0.5π), as seen in Fig. 5(c). In addition, we also see that the
observable T presents discriminatory capability with σ2, being
more sensible to this parameter as larger the retardance value
[larger curves in Fig. 5(c)]. Therefore, the combination of
observables T and R arises as a nice framework to study the
inherent characteristics of retarder-based depolarizers, as is
the case of the retardance ϕ and the dispersion σ2. However,
when we deal with retardance-based depolarizers with larger
retardance ϕ values [see larger ϕ range in Fig. 5(a),
ϕ ¼ ð0.1π; πÞ], the newly analyzed curves overlap with those
previously studied in Fig. 5(c), which leads to an ambiguity
in the determination of the retardance parameter.

If the same study is conducted in terms of the P1P2 space
[see Figs. 5(b) and 5(d)], the same discriminatory potential is
observed for the ϕ = (0.1π and 0.5π) range, as a combination

of P1P2 observables [see Fig. 5(d)], but unlike for the RT plane
case, the P1P2 space still presents certain discriminatory poten-
tial for the full range ϕ ¼ ð0.1π; πÞ, although the sensibility de-
creases as the ϕ value increase [see Fig. 5(b)]. Therefore,
simulated results in Fig. 5 provide that IPP space performs better
than PRT space because the IPP space effectively avoids the
ambiguity in ϕ discrimination. However, there is still a problem
with P1P2 space for large values of ϕ, in which, for instance,
curves only share a limited area and thus the distance between
curves is notably reduced (loss of sensitivity for larger ϕ values).
A more detailed description of the selected observables and
model parameters is provided in the Supplementary Material.

Last but not least, we want to note that data in Fig. 5 provide
a certain correlation among polarimetric observables, as R and
T, and physical parameters, as ϕ and σ2, thus paving the way to
implement physical models based on R and T macroscopic mea-
surements for microscopic parameters determination. This idea
is further explored in Sec. 3.3.

There are other scenarios that can also be represented in
nature, as is the case of systems with the same unitary element
orientations but presenting a dispersion in the mean polarimetric
value, that is, dispersion on the retardance for retardance-based
depolarizers and dispersion in the diattenuation in the diatten-
uation-based depolarizers. This situation is explored and dis-
cussed in Sec. 3 in the Supplementary Material, but the main
conclusion is that the combination of the IPP and PRT spaces
is also suitable for distinguishing depolarizers originated by
different dispersion values of the mean polarimetric parameter.

Fig. 5 Retarder-based depolarizers corresponding to different control parameters represented
at the P1P2 and RT spaces. (a) RT space with full range. (b) P1P2 space with full range.
Depolarizers spatial variation with σ2 in the (c) RT space with retardance ϕ smaller than 0.5π
and the (d) P1P2 space with retardance ϕ smaller than 0.5π.
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3.2 Experimental Results

In this section, we provide the experimental validation of the
methods provided in Sec. 3.1. This is achieved by conducting
diverse phantom experiments trying to reproduce some of the
depolarizers simulated in Sec. 3, with the aim of validating
the provided conclusions. To do so, we measured the experi-
mental MM of a polarizer and of a quarter-wave plate
(Meadowlark Optics, Frederick, Colorado, United States) at
different orientations, using a complete imaging polarimeter.
The experimental MMs were obtained by the complete imaging
polarimeter sketched in Fig. 6.

The light source of the polarimeter is a multiwavelength light
emitting diode (LED) source where red light (the wavelength
centered at 625 nm with a narrow band of 10 nm) is employed.
Then, the input light (illuminating samples) is modulated by the
polarization state generator (PSG), composed of a linear polar-
izer and two liquid crystal retarders (LCR1 and LCR2). Incident
light beam with customized polarization then illuminates stud-
ied samples (herein the polarizer and quarter wave plate). Light
exiting from samples after polarimetric transformation is ana-
lyzed by a subsequent polarization state analyzer (PSA), com-
posed of other two LCRs, and a linear polarizer. Finally, images
of the studied sample plane are obtained with a standard CCD
camera with an exposure time of 100 ms (Allied Vision Manta
G-504B). By taking into account the linear relation between
input and output polarizations through MMs, by properly select-
ing an array of input polarizations, and detecting the related
polarizations exiting from the sample, the complete MM of
analyzed samples can be readily obtained. Notably, before
measuring the studying sample, the MM polarimeter is cali-
brated, and the condition number is 1.85. More details about
polarimeter calibration and MMs measurement referent to the
used polarimeter can be obtained in Ref. 54.

Using the above-described polarimeter, the experimental
MMs of the polarizer and the quarter-wave plate samples were
measured in both cases for 1800 equidistant orientations (from
0 to π with steps of π∕1800). Note that from this MM database,
by properly incoherently adding experimental MMs, we can
implement diverse experimental depolarizers. According to the
manufacturer’s technical specification, the transmission coeffi-
cients for the polarizer used in experiments are larger than 0.82
and the extinction ratio is larger than 683:1. In the case of the
waveplate used, the retardance is π∕2 for 625 nm, so it behaves
as a quarter-waveplate for this wavelength. Under this scenario,
we can implement different depolarizers by controlling the
orientation standard deviation σ2 (set to follow a Gaussian

distribution) when incoherently adding the measured MMs.
Therefore, we implemented a collection of different experimen-
tal diattenuation-based depolarizers and retarder-based depolar-
izers as a function of different σ2 values. The obtained results are
represented at the PRTand P1P2 spaces (see Fig. 7). In addition,
the associated simulated results, considering an ideal polarizer
(D ¼ 1) and an ideal quarter-waveplate (ϕ ¼ π∕2), are also pro-
vided in Fig. 7 for comparison. In the case of the experimental
quarter-waveplate, we found that the experimental MM pre-
sented slight diattenuation values (0.036) that can be related
to Fresnel coefficients in reflection and refraction processes
at the waveplate entrance-exiting faces. Furthermore, we applied
a Lu–Chipman decomposition method,45 which decomposes
any MM as the product of a depolarizer matrix, a pure retarder
matrix, and a pure diattenuator matrix to the experimentally ob-
tained Mueller matrices. Then, the data presented in Fig. 7 for
the retarder case are just that obtained from the Lu–Chipman
derived Retarder matrix, as this situation removes possible
diattenuation and depolarizing contributions, which ensures a
closer comparison with the theoretical pure retarder. As stated
in the Fig. 7 legend, simulated results are provided in red,
whereas experimental results are provided in blue. We obtain
an excellent agreement between simulated and experimental re-
sults, providing the validity of the proposed methods. Note that
for the P3 axis, the range is restricted between 0.75 and 1.1 for
better visualization of data.

In particular, the represented data curves clearly demonstrate
that simulations and experiments present an excellent match as a
function of different orientation variances σ2 (different points in
each curve). To quantificationally represent the discrepancy
among them, the mean square error (MSE) of the distance be-
tween points representing the simulation and experiment with
the same setups are calculated. The MSEs of Figs. 7(a)–7(d)
are 0.027, 0.030, 0.026, and 0.029, respectively. Note that
these small differences among simulated-experimental data are
mainly associated with non-ideal experimental elements (polar-
izer and quarter-waveplate) used in the experiments. In particu-
lar, the polarizer sample shown, for the wavelength used in
the experiments (625 nm), the diattenuation is 0.97, whereas
according to the Lu–Chipman decomposition approach, the
quarter-waveplate presented an experimental retardance of
f ¼ 0.53π. Besides, as shown in Fig. 7, the experimental results
illustrate that the polarizer-based depolarizers and quarter-wave
plate–based depolarizers lie on different surfaces. This confirms
the discussion provided in the previous simulation (Sec. 3), that
is, a new criterion to distinguish between diattenuator-based and
retarder-based depolarizers is here presented.

Fig. 6 Scheme of the MM polarimeter.
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3.3 Physical Parameter Sample Characterization from
PRT Space Polarimetric Observables

As analyzed in Sec. 3.1, depolarizers consist of a large number
of units whose polarization properties determine the macro-
scopic polarization features of the resulting depolarizers.
Furthermore, Sec. 3.1 has paved the way to correlations among
inherent physical characteristics of depolarizers with polarimet-
ric observables. In this vein, the goal of this section is to imple-
ment a physical model, based on polarimetric observable data,
able to retrieve inherent information of samples. In particular,
we develop diverse models, based on the PRT space observ-
ables, characterizing the physical features of diattenuator-based
depolarizers (Sec. 3.3.1) and retarder-based depolarizers
(Sec. 3.3.2). We selected the PRT observables to implement
the models because, according to Sec. 3.1 discussion, they have
proved a superior performance in terms of sample characteriza-
tion. Note that this is the first attempt presented in the literature
to characterize microscopic information of samples from
macroscopic depolarizing measurements.

3.3.1 Calculating physical characteristics of diattenuator-based
depolarizers

We recall that the diattenuator-based depolarizers were obtained
from the incoherent addition of a series of diattenuator with a

given diattenuation D and orientation dispersion indicated by
the covariance σ2. As stated in Sec. 3.1, there is a clear corre-
lation between Pp observable and σ2. In addition, further analy-
sis of connections between PRT observables and physical
features has shown us that there is also a strong correlation be-
tween the observable R and the diattenuation D of the corre-
spondent depolarizers. Importantly, R observable is independent
of σ2, so we find a direct link between polarimetric measurement
R with physical feature D associated with diattenuator-based
depolarizers. This independency of σ2 with diattenuation is
provided in Fig. 8(a), where the results clearly illustrate that all
curves with different σ2 marked in different colors are totally
coincident (overlapped) along the same trajectory. Afterward,
by taking profit of the direct relation between D and R, we
implemented an analytical function ofD dependent on R param-
eter, allowing us to predict D values from R measurements. To
do so, we implemented a polynomial fit on data in Fig. 8(a),
leading to the following analytical equation:

DðRÞ ¼ −196.6R5 þ 671.39R4 − 903.08R3 þ 595.4R2

− 192.43Rþ 25.39: (13)

To verify the accuracy of Eq. (13) in terms of predicting D
from R measurements, the experimental database measured in

Fig. 7 Comparison between simulations and experiments in the studied space for different
samples with varying σ2. (a) Distributions with σ2 for diattenuator-based depolarizers in PRT
space. (b) Distributions with σ2 for retarder-based depolarizers in PRT space. (c) Distributions
with σ2 for diattenuator-based depolarizers in IPP space. (d) Distributions with σ2 for retarder-
based depolarizers in IPP space.
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Sec. 3.2 (1800 equidistant orientations of polarizer from 0 to π
with steps of π∕1800) is employed to construct the diattenuator-
based depolarizers with different σ2. In particular, based on the
measurement of the polarizer at different orientations, we con-
structed 300 depolarizers whose σ2 was modified from 0 to 0.5π
with the step of π∕600. At this stage, we calculated the corre-
sponding R value for each implemented depolarizer. Afterward,
the polarimetric observable D is calculated using Eq. (13) with
R as the only independent variable. Note that all depolarizers
were constructed from the same experimental polarizer, so they
share the same D value, and according to the previous analysis,
the same R value. Under this scenario, independently of the
different σ2 evaluated all depolarizers must provide the same
diattenuation response. The obtained results show an excellent
agreement between the average of experimental Dexp values
(Dexp ¼ 1.04� 0.03) and the expected value D ¼ 0.97. Note
that the slight differences are accounted for by errors associated
with the experimental measurement, which are related to instru-
mental sources such as illumination bandwidth or polarizer mis-
alignments from measurement to measurement.

The next step is to build a second model able to predict σ2

from polarimetric observables. As previously discussed, the
observable PP is especially suitable for this aim. For the sake
of clarity, Fig. 8(b) states this link between σ2 and PP for dia-
ttenuator-based depolarizers related to different D values [see
the legend in Fig. 8(b)] which are perfectly discriminated by
the PP observable [X-axis in Fig. 8(b)]. Note that different
curves (colors) relate to different D values, which are perfectly
determined from R observable, as provided by Eq. (13).

To implement the analytical function relating σ2 with PP
measurements, we chose an arbitrary curve D ¼ 1 [see the vio-
let curve in Fig. 8(b)]. Note that this approach is reasonable as in
experimental implementations, we can determine the proper D
by Eq. (13) and then, fix it to be applied in the following ap-
proach. At this point, theD ¼ 1 curve was fitted to a polyonomy
and the obtained results are presented in the following equation:

σ2ðPP;D ¼ 1Þ ¼ −20.92P5
P þ 63.14P4

P − 73.61P3
P

þ42.25P2
P − 13.31PP þ 2.42: (14)

To test the validity of Eq. (14), we implemented experi-
mental depolarizers by arbitrarily assigning different σ2 to the

incoherent additions (see the third column in Table 1). From the
corresponding obtained Mueller matrices of implemented depo-
larizers, the experimental PP values were calculated (see first
column in Table 1). Finally, these PP values were applied to
Eq. (14), obtaining the corresponding calculated σ2 (see second
column in Table 1). We obtain an excellent agreement between
experiments and calculations as can be observed from absolute
errors between assigned and calculated values (see fourth
column in Table 1) as well as from the mean absolute error
(∼1% error).

3.3.2 Calculating physical characteristics of retarder-based
depolarizers

As a continuation, we aim to calculate the physical character-
istics of retarder-based depolarizers. Recall that the physical
characteristics of retarder-based depolarizers consisted of retard-
ers with different retardance ϕ and orientation distribution σ2.
As stated in Sec. 3.1, there is a clear correlation between R
observable and ϕ, where the represented curves with different
ϕ are almost perpendicular to the X axis [when ϕ is smaller
than 0.5π, see Fig. 5(c)]. Importantly, further analysis demon-
strates that the observable R is independent of σ2, and what is
more, only dependent on ϕ. To prove this statement, the
relation between R and φ with different σ2 is illustrated in
Fig. 9(a), in which all curves are marked in different colors rep-
resenting varying σ2. Note that all curves are totally coincident

Fig. 8 Relation between the measured polarimetric and physical characteristics for diattenuator-
based depolarizers. (a) Relation between D and R at different σ2. (b) Relation between PP and σ2

at different D.

Table 1 Difference (rad) between calculated σ2 and assigning σ2

for diattenuator-based depolarizers.

PP Calculated σ2 Assigning σ2 Absolute error

0.3 0.7026 0.7355 0.0329

0.4 0.5471 0.5516 0.0045

0.5 0.4188 0.4203 − 0.0015

0.6 0.3004 0.3100 − 0.0096

0.7 0.2012 0.2101 − 0.0089

0.8 0.1308 0.1156 0.0152

0.9 0.0749 0.0578 0.0171

Mean absolute error 0.0128
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independently on σ2, indicating that ϕ can be calculated by the
polarimetric observable R as a single variable. Under this situa-
tion, we fitted with a polynomial relation data in Fig. 9(a), lead-
ing to the following analytical equation:

ϕðRÞ ¼ −9.54R3 þ 18.41R2 − 13.42Rþ 4.56: (15)

To confirm the illustrated relation between ϕ and R [see
Eq. (15)], the data of the quarter-wave plate measured in
Sec. 3.2 (1800 equidistant orientations of the quarter-wave plate
from 0 to π with steps of π∕1800) were employed to construct
the retarder-based depolarizers with different σ2. In particular,
the 300 retarder-based depolarizers with different σ2 were con-
structed, and the R of each consisting depolarizer is calculated to
obtain ϕ. In this scenario, all depolarizers were constructed from
the same experimental waveplate sharing the same ϕ value,
so all generalized retarder-based depolarizers with different
σ2 should provide almost the same retardance response.
Accordingly, the obtained average of the calculated retardances
was ϕexp ¼ 1.72� 0.03. Compared with the expected value
(ϕ ¼ 1.66 of the measured quarter wave), the small difference
proves the applicability of Eq. (15).

Afterward, we developed a model able to predict σ2 from
polarimetric observables. As previously discussed, whereas
the polarimetric observable PP of retarder-based depolarizers
always equals 0, due to the absence of diattenuation in
retarder-based depolarizers, only observable T is left and it is
sensitive to the change of σ2 [see Fig. 5(a)]. For this reason,
the relation between σ2 with T at different ϕ values is repre-
sented in Fig. 9(b), in which the different ϕ relates to different
color curves. Observed dependences indicate that σ2 is able to
be calculated from observable T after we calculate the value of ϕ
by R through Eq. (15). To implement the way of calculating σ2

with observable T measurements, we chose an arbitrary curve
ϕ ¼ 0.5π [see the violet curve in Fig. 9(b)] and fitted it to a
polyonomy presented in the following equation:

σ2ðT;ϕ ¼ π∕2Þ ¼ −38.12T5 þ 101.19T4 − 103.44T3

þ52.19T2 − 14.60T þ 2.34: (16)

Finally, to test the validity of Eq. (16), we experimentally
obtain the T value from experimental Mueller matrices of imple-
mented retarder-based depolarizers constructed from the con-
trolled incoherent addition of experimental waveplate (see the
first column in Table 2), by arbitrarily assigning different σ2

(see the third column in Table 2). Afterward, these T values were
applied to Eq. (16) to obtain the corresponding calculated σ2

(see the second column in Table 2). The experiments and cal-
culations represent an excellent agreement, as can be observed
from absolute errors between assigned and calculated values
(see the fourth column in Table 2) as well as from the mean
absolute error (< 2% error).

In summary, the PRT polarimetric observables are excellent
tools to retrieve microscopic physical characteristics from mac-
roscopic polarimetric measurements. In particular, the polari-
metric observable R is suitable to calculate the diattenuation
D and retardance ϕ for diattenuator-based and retarder-based
depolarizers, respectively. With this prior information of the
exact values of diattenuation D and retardance ϕ, the orientation
distribution σ2 of elementary units generating depolarization
within the samples, can be calculated by, on the one hand,
the relation between σ2 and PP, provided in Fig. 8(b), and on
the other hand, the relation between σ2 and T, provided in
Fig. 9(b).

Fig. 9 Relation between the measured polarimetric and physical characteristics for retarder-
based depolarizers. (a) Relation between ϕ and R at different σ2. (b) Relation between σ2 and
T at different ϕ.

Table 2 Difference (rad) between calculated σ2 and assigning σ2

for retarder-based depolarizers.

T Calculated σ2 Assigning σ2 Absolute error

0.3 0.5912 0.5734 0.0178

0.4 0.4304 0.4255 0.0049

0.5 0.2906 0.3047 −0.0141

0.6 0.1754 0.1839 −0.0085

0.7 0.1021 0.1103 −0.0082

0.8 0.0566 0.0525 0.0041

0.9 − 0.0526 0.0105 −0.0631

Mean absolute error 0.0172
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4 Conclusion
In this paper, we combined PRT and IPP spaces to infer the
physical properties of different depolarizers, i.e., diattenuator-
based depolarizers and retarder-based depolarizers constructed
according to parallel decomposition. Although IPP space de-
scribes the magnitude of randomness induced by the interacted
samples with incident polarized light, PRT space emphasizes the
physical properties related to depolarization. For this reason, the
information expressed by such two polarization spaces is com-
plementary, which provides the possibility of identifying and
analyzing the studying depolarizers. In particular, PRT space
is capable of distinguishing retarder-based depolarizers from
diattenuator-based depolarizers, as well as maximizing the dis-
crepancy (geometrical distance) of different depolarizers with
the same origin but different controlling parameters. However,
ambiguity points, in PRT space, for retarder-based depolarizers,
appear once the controlling parameters are beyond a threshold
(herein ϕ about equals 0.6π). As expected, the threshold can be
recognized in IPP space, and moreover, the space is able to
further distinguish among the depolarizers represented by the
ambiguity points in PRT space. Importantly, the proposed method
also has the capacity to discriminate more complex polarization-
anisotropic scenarios, that is, the depolarizers contain both depo-
larizers and diattenuators inside. Most importantly, although the
depolarizers studied in this paper are polarization–anisotropy,
the proposed method is able to analyze the samples containing
polarization–isotropy depolarization, though being implemented
on the polarization–anisotropy part in the samples. The only re-
striction of the method is to discriminate among different ideal
depolarizers as in such systems, all polarization information of
how depolarization was generated is lost.

Next, the results are verified by the measurement of a polar-
izer and a quarter-wave plate with different directions to
construct depolarizers with different σ2. The illustrated data in
both IPP and PRT spaces demonstrate the consistency between
the simulation and measurement, proving the correction of the
results from the simulation illustrated in this paper. Finally, we
provide a method to characterize the microscopic physical fea-
tures of depolarizers from macroscopic polarization measure-
ments associated with PRT space observables. As a proof of
concept, we implemented diverse models that have proved to
be suitable for the accurate determination of significant param-
eters of diattenuator-based depolarizes, as the diattenuation D of
microscopic elements, of retarder-based depolarizers, as the
retardance φ of microscopic elements, and the corresponding
orientation distribution described by σ2 in both cases. In this
regard, the relevance of some observables as R, T, and PP
was highlighted.

In summary, we demonstrated that the combined use of the
PRT and IPP spaces conforms to a suitable framework to accu-
rately infer relevant microscopical properties of samples that are
coded in their macroscopic depolarizing response. Methods
provided in this work are general and of potential interest in
all those applications dealing with depolarizing samples. In this
sense, they could play a vital role in a vast number of applica-
tions such as material characterization, biological tissue identi-
fication, and pathology early detection both in botanical and
biomedical fields.
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