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Abstract. We investigated the effect of targeted gene therapy on heat shock protein 70 expression (Hsp70) and
protein production (HSP70) in a melanoma tumor model (M21; M21-L). M21 and M21-L cells transfected with a
plasmid containing the Hsp70 (Hspa1b) or the cytomegalovirus (CMV) promoter and the luciferase reporter gene
were injected into mice; the resulting tumors grew to a size of 650 mm3. Mice (five per group) were intravenously
treated with an Arg-Gly-Asp peptide-nanoparticle/Raf-1 kinase inhibitor protein complex [RGD-NP/RAF(-)] or with
a nanoparticle control. Bioluminescence imaging (IVIS®, Xenogen, USA) was performed at 12, 24, 48, and 72 h
after the treatment cycle. Western blot analysis of HSP70 protein was performed to monitor protein expression. The
size of the treated M21 tumors remained fairly constant (647.8� 103.4 mm2 at the beginning versus
704.8� 94.4 mm3 at the end of the experiment). The size of the M21-L tumors increased, similar to the untreated
control tumors. Bioluminescent imaging demonstrated that when transcription was controlled by the CMV promo-
ter, luciferase activity decreased to 17.9%� 4.3% of baseline values in the treated M21 tumors. When transcription
was controlled by theHsp70 promoter, the highest luciferase activity (4.5� 0.7-fold increase over base-line values)
was seen 24 h after injection in the M21 tumors; however, no luciferase activity was seen in the M21-L tumors. In
accordance with bioluminescent imaging, western blot analysis showed a peak in HSP70 production at 24 h after
the injection of the RGD-NP/RAF(-) complex in the M21 tumors; however, no HSP70 protein induction was seen
in the M21-L tumors. Thus, targeted antiangiogenic therapy can induce Hsp70 expression and HSP70 protein in
melanoma tumors. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.6.065001]
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1 Introduction
Angiogenesis is a hallmark of cancer, since tumors cannot grow
in size or metastasize without an adequate blood supply.1,2

Endothelial cells within the angiogenic vessels are known to
express several markers that are almost completely absent in
normal blood vessels.3,4 One such marker, αvβ3 integrin, has
gained increasing attention, because its expression level in
tumor vasculature correlates with the grade of malignancy.5,6

Viral vectors,7 liposomes,8 and naked DNA9 have all been
used for the delivery of therapeutic genes to vascular tissue,
but none of these approaches is specific for endothelial cells.
Targeting integrin αvβ3 by means of drugs may provide an
opportunity to selectively destroy tumor vessels by drug target-
ing, without affecting the microvasculature of normal tissues.
This integrin receptor potentiates the internalization of foot-
and-mouth disease virus,10 rotavirus,11 and adenovirus,12

thereby facilitating gene transfer. Integrin αvβ3 has been suc-
cessfully targeted in endothelial cells by means of nonviral

gene delivery, using a small organic αvβ3 ligand covalently
coupled to a cationic polymerized lipid-based nanoparticle,
along with a mutant form of the Raf-1 kinase inhibitor protein,
which fails to bind ATP (ATP-Raf) and blocks Raf-1 activity in
cultured endothelial cells.13

The mitogen-activated protein kinase (MAPK) cascade is a
key intracellular signaling pathway that regulates diverse cellu-
lar functions, including cell proliferation, cell cycle, cell survi-
val, angiogenesis, and cell migration. The cascade includes a
diverse group of members, but is generally described as a linear
signaling pathway, initiated by receptor tyrosine kinases at the
cell surface and culminating in the regulation of gene transcrip-
tion in the nucleus, directed by the extracellular signal-regulated
kinase (Erk). Although conceptually linear, considerable cross-
talk occurs between the Ras/Raf/MAPK/Erk kinase (MEK)/Erk
MAPK pathway and other MAPK pathways, as well as many
other signaling cascades. The Ras-Raf-MEK-ERK pathway was
used because its disruption suppresses angiogenesis in vivo and
because suppression of Raf-1 activity has been reported to
promote apoptosis.14,15*Both authors contributed equally to this paper.
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Furthermore, heat shock proteins (HSPs) play an important
role both in normal cellular homeostasis and in the stress
response, including the development of thermotolerance and
protection from cellular damage associated with stresses such
as ischemia, cytokines, and energy depletion. One of the first
discovered physiological functions associated with the stress-
induced accumulation of the inducible HSP70 protein was the
acquisition of thermotolerance, which is defined as the ability
of a cell or organism to develop resistance to heat stress after
prior sublethal heat exposure.16 Data from subsequent studies
indicated that the induction of the relevant gene, Hsp70, was
associated with development of tolerance to a variety of stresses,
including hypoxia,17 ischemia,18 acidosis,19 energy depletion,20

cytokines, such as tumor necrosis factor-α (TNF-α),21 and ultra-
violet radiation.22 Bioluminescence imaging technology23

presents the opportunity for spatial and temporal quantification
of Hsp70 promoter efficiency through in vivo imaging, yielding
insights into production of the protein itself.

The purpose of this study was to evaluate the effect of tar-
geted antiangiogenic gene therapy in an M21 tumor model as
evaluated by bioluminescence imaging and western blot analy-
sis, in order to more closely examine the Hsp70 expression
pattern and production of HSP70 protein in tumor tissue under-
going this type of therapy.

2 Experimental Procedures
All animal experiments were performed in compliance with
institutional animal care committee guidelines and with the
approval of the animal care committee.

2.1 Reporter Construct

Two different plasmids were used for this study. The first plas-
mid contained the constitutive cytomegalovirus (CMV) promo-
ter, and the second plasmid, the heat- and stress-inducibleHsp70
(Hspa1b) promoter. The plasmid pcDNA3.1(+) (Invitrogen, San
Diego, CA), including a CMV promoter and a selectable marker
(neor), was used as the backbone.

The luciferase gene was ligated into the plasmid to obtain the
CMV-luc reporter construct. In order to obtain the Hsp70-luc
plasmid, the Hsp70A1 promoter (Fig. 1) was amplified from
the mouse genomic DNA (Genbank accession number
M76613) by polymerase chain reaction (PCR). The resulting
1926 base pair (bp) product, incorporating the Hsp70A1 promo-
ter fragment, was digested with the restriction enzymes KpnI

and NcoI. The Hsp70A1 promoter sequence was replaced
with the CMV promoter, and the whole fragment was then
ligated into the luciferase reporter gene construct to yield the
Hsp70-luc plasmid.

2.2 Cells

Human melanoma cells expressing integrin αvβ3 (M21) or lack-
ing this integrin (M21-L)24 were incubated in RPMI 1640
culture medium (Gibco BRL , Life Technologies, USA) supple-
mented with 10% fetal bovine serum (FBS); (Gibco BRL, Life
Technologies, USA) and antibiotics. The cells were cultured and
transfected with the reporter construct, and resistant colonies
were selected with Geneticin (500 μg∕mL), (Gibco BRL,
Life Technologies, USA). In order to assess whether the cells
had been stably transfected with the Hsp70-luc plasmid, cells
were exposed to heat stress (42°C for 20 min), and cell colonies
with high luciferase activity were cultured further. The trans-
fected CMV-luc cells also showed high luciferase activity.

2.3 Tumor Implantation

For tumor cell implantation, 12-week-old nude mice (Jackson
Laboratories, USA) were anesthetized with intraperitoneal pen-
tobarbital (58 mg∕kg). An average of 2 × 105 tumor cells of
each tumor cell line (M21, M21-L) in Hanks’ solution were
implanted subcutaneously (s.c.), under the dorsal skin of the
flank, using a 27 G needle. The total volume of injection
was 0.2 ml. The size of the tumors was measured twice a
week to monitor the growth of the tumor. The tumors were mea-
sured with a microcaliper and values rounded to the nearest
millimeter. Tumor size was determined by manually measuring
two diameters [length (a), and width (b)]. Assuming the tumor
was an oval body, tumor volume was calculated according to the
following formula: V ¼ ab2π∕6. Approximately two weeks
were required for tumors to grow to 650 mm3 in size.

2.4 Antiangiogenic Gene Therapy

To form the Arg-Gly-Asp peptide (RGD)-conjugated nanopar-
ticles (NP), particles containing 0.5% biotinylated lipid, 29.5%
Gd3þ-chelator lipid, 10% amine-terminated lipid, and 60% filler
lipid (PDA) were constructed. First, to synthesize the NPs,
purified lipid components were dissolved in organic solvents
(CHCl3 and CH3OH, in a ratio of 1∶1). The CHCl3 and
CH3OH were evaporated and dried in a rotary evaporator for
24 h. Distilled and deionized water was added to yield a hetero-
geneous solution of 30 mM total lipid concentration. The lipid/
water mixture was then sonicated with a probe-tip sonicator for
at least 1 h. Throughout sonication, the pH of the solution was
maintained between 7.0 and 7.5 with 0.01N NaOH solution, and
the temperature was maintained above the gel-liquid crystal
phase transition point (Tm). The liposome solution was then
transferred to a petri dish resting on a bed of ice, cooled to
0°C, and irradiated at 254 nm for at least 1 h with a hand-
held UV lamp placed 1 cm above the petri dish, to yield
NPs. The NPs were then filtered through a 0.2-mm filter and
collected.

Using a Brookhaven dynamic light scattering system
(BI-200SM multiangle laser light scattering system, Brookha-
ven Instruments Corporation, USA), the size (diameter) distri-
bution and zeta potential of NPs were determined to be
45.3� 2.4 nm and þ35 mV, respectively, as averaged for 17

Fig. 1 Description of Hsp70A1 promoter sequence used in the
Hsp70-luc reporter construct.
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cycles of NP synthesis. The resulting NPs were red (absorption
maxima at 498 and 538 nm) and were stable at room tempera-
ture, even in the presence of serum. RGD-conjugated paramag-
netic polymerized vesicles were formed using an avidin bridge
to attach the RGD peptide, via biotin molecules, to the particle
surface.25,26 The ratio of the RGD peptide and avidin was 2.7∶1.

A plasmid with a dominant-negative mutant form of Raf-1
was used as the therapeutic agent. This Raf-1 mutant
(ATPμ-Raf) fails to bind ATP, producing a dominant-negative
effect. The plasmid and NPs are held together during assembly
by electrostatic charges due to the cationic nature of the NPs
and the negative charge of the plasmid. This targeted NP-
plasmid complex [RGD-NP/RAF(-)] was systemically injected
into the mice, through the tail vein,13 for a total of seven times.
The mice received these intravenous treatments at a dose of
1 mg∕kg of NP and 1 μg∕kg of the ATPμ-Raf-containing plas-
mid; the total volume for each injection was 200 μl. Control
mice were injected only with the targeted nanoparticles, i.e.,
those lacking the ATPμ-Raf-containing plasmid.

2.5 Experimental Groups

Five animals were assigned to each experimental group, which
were defined as follows: M21 or M21-L tumors transfected with
the Hsp70-luc plasmid or with the CMV-luc plasmid, where the
animals were given (1) no therapy, (2) antiangiogenic therapy, or
(3) injection of the targeted-NPs only.

2.6 Bioluminescence Imaging

Bioluminescence imaging was performed with a highly sensi-
tive, cooled CCD camera, mounted in a light-tight specimen
box (IVIS®, Xenogen, USA), using protocols similar to
those described previously.27 Before imaging, animals were
anesthetized in a plastic chamber filled with a 2% isoflur-
ane/air mixture; 150 mg∕ml of luciferin (potassium salt,
Xenogen, USA) in normal saline was injected intraperitoneally
(i.p.), at a dose of 150 mg∕kg body weight, 10 min before
imaging. This dose and route of administration have
been shown to be optimal for studies in rodents when
images were acquired between 10 and 20 min post-luciferin
administration.28

For imaging, mice were placed onto the warmed stage inside
the light-tight camera box, with continuous exposure to 1% to
2% isoflurane. The animals were imaged prior to any treatment,
as well as at 12, 24, 48, and 72 h after the treatment cycle,
and data were acquired for 60 s; this imaging time was
shown to yield superior results. The low levels of light emitted
from the bioluminescent tumors were detected by the IVIS®
camera system and were then integrated, digitized, and
displayed. The regions of interest (ROI) from displayed images
were designated around the tumor area and were quantified as
total photon counts or in photons/s, using Living Image® soft-
ware (Xenogen, USA). The background bioluminescence
in vivo was in the range of 1 × 104 photon counts or 1 to 2 ×
105 photons.

2.7 Immunoblot

In order to correlate bioluminescence results with protein pro-
duction, an HSP70 immunoblot experiment was performed. The
treated tumors were harvested 12, 24, 48, and 72 h after injection
of the RGD-NP/RAF(-) complex. The treated and untreated

tumors were placed in lysis buffer (8 M urea/2% CHAPS
with proteinase inhibitor) and were homogenized on ice.
The homogenized slurry was transferred to a clean tube and
centrifuged at 8670 × g for 10 min at 4°C (Eppendorf centrifuge
5801 R; Eppendorf, Germany). The supernatant was aliquoted
to sterile microcentrifuge tubes and kept at −80 °C until use.
Protein concentrations in the aliquots were measured using
the Bio-Rad Protein Assay (Bio-Rad, USA) with bovine
serum albumin as the standard. The equivalent of 100 μg of
total protein of the sample was electrophoresed on 4%
to 10% SDS-PAGE gels and then transferred onto nitrocellulose
membranes (Bio-Rad, USA). Heat-shocked HeLa Cell Extract
(LYC-HL101F, StressGen, USA) was coelectrophoresed
as a positive control, and beta-actin antibody was used as a
loading control (A5441, Sigma, USA). The nitrocellulose
membrane was blocked overnight with 5% nonfat dry milk
in TBST buffer (20 mM Tris-HCl, 150 mM NaCl, pH 7.4)
containing 0.1% Tween 20 and then probed with the anti-
HSP70 monoclonal antibody (alkaline phosphatase-conjugated
SPA-810 AP, StressGen, USA). Immunodetection of the protein
was achieved by the use of an enzymatic chemifluorescence
(ECF) reagent (Amersham/Vistra, USA) according to the
manufacturer’s protocol and imaged on a phosphorimager
(Amersham, USA).

2.8 Histology

At the end of the study, the animals were euthanized, and the
treated tumors and untreated control tumor tissue were retrieved
for histological analysis. For hematoxylin and eosin (H&E)
staining, tissue samples were preserved in 10% formalin
solution for 96 h. Subsequently, samples were embedded in par-
affin, sectioned, and stained with H&E, and mounted on glass
slides. Terminal deoxynucleotidyl transferase (TdT)-mediated
dUTP nick-end labeling (TUNEL) assays were used for the
detection of tumor apoptosis, using tumor total antioxidant
capacity (TACs) kits (R&D Systems Inc. USA). Briefly,
tumor samples were first fixed with 10% formaldehyde and
the cell membranes permeabilized with Cytonin reagent.
DNA strand breaks were then labeled with biotinylated nucleo-
tides in TUNEL buffer at 37°C for 1 h. Apoptotic cells were
visualized as brown precipitates generated by streptavidin-
conjugated horseradish peroxidase in the presence of diamino-
benzidine (DAB). Samples were then counterstained with 1%
methylgreen to show viable cells.

2.9 Statistical Analysis

The mean bioluminescence (photon/s) and corresponding stan-
dard errors were determined for each experiment. The data from
treated and control groups were also analyzed using the Mann-
Whitney test. A p-value of <0.05 was considered statistically
significant.

3 Results
The untreated M21 tumors increased from 690.8� 55.9 mm3 to
1345.3� 55.6 mm3 in size (p < 0.0001), while the untreated
M21-L tumors increased from 701.0� 42.9 mm3 to 1265.3�
34.6 mm3 in size (p < 0.0001) during the experiment (19 days).
No difference in size was found between the untreated M21 and
M21-L tumors (p ¼ 0.212), nor was there any difference in size
between the untreated M21-L tumors transfected with the
CMV-luc or Hsp70-luc plasmids (p ¼ 0.03). Transcription
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controlled by the CMV promoter luciferase activity increased
significantly during this period by 2.5� 0.6-fold (p < 0.001),
while that controlled by the Hsp70 promoter increased by
2.9� 0.9-fold (p < 0.001).

The mean size of the treated M21 tumors did not increase as
much as that of the untreated tumors; the former were on an
average 659.8� 103.4 mm3 at the start of the experiment,
and reached a size of 704.8� 94.4 mm3 by the end of the treat-
ment. Although the increase in size of the treated M21 tumors
was statistically not significant (p ¼ 0.080), the increase in size
differed significantly compared to that of the untreated control
group (p < 0.001). No significant difference was seen in the
initial size (636� 87.4 mm3 versus 666.8� 109.4 mm3;
p ¼ 0.451) and final size after treatment (697.8� 84.8 mm3

versus 712.8� 104.4 mm3; p ¼ 0.532) of the M21 tumors
transfected with the CMV-luc plasmid and those transfected
with the Hsp70-luc plasmid.

The treated M21-L tumors showed growth behavior
similar to that of the untreated M21 and M21-L tumors;
their size increased from 698� 52.9 mm3 to 1302.3�
102.6 mm3 (p < 0.001).

3.1 Bioluminescence Imaging

In the M21 tumors, bioluminescence imaging demonstrated
that when transcription was controlled by the CMV promoter,
luciferase activity decreased under the antiangiogenesis
therapy by 17.9� 4.3%, compared to the initial luciferase
activity (2.5 × 108 photons∕s versus 4.5 × 107 photons∕s;
p < 0.0001). In the M21-L tumors, no difference was seen
between the treated tumors and the untreated controls.

When transcription was controlled by the Hsp70 promoter in
the M21 tumors, the highest induction of luciferase activity
was seen 24 h after the injection of the RGD-NP/RAF(-)
complex (Fig. 2). The first three injections induced the
luciferase activity by 4.5� 0.7-fold compared to baseline
(3.8 × 107 photons∕s versus 6.5 × 106 photons∕s; p < 0.001).
The subsequent three injections induced luciferase
activity by between 1.9� 0.3- and 2.4� 0.4-fold
(9.2 × 106 photons∕s versus 4.3 × 106 photons∕s; p < 0.010

between the fourth and fifth injection; 1.0 × 107 photons∕s ver-
sus 4.2 × 106 photons∕s; p < 0.010 between the fifth and sixth
injection). Each therapy cycle reduced the baseline luciferase

Fig. 2 Transcription controlled by theHsp70 promoter in M21 tumors. (a) Luciferase activity after injection of the RGD-NP/RAF(-) complex. The highest
luciferase activity was seen at 24 h post injection. In the M21-L tumors (b), no increase in luciferase activity was found. Pseudocolor images represent-
ing light intensity were superimposed over the grayscale reference images, and light intensity was calculated for each animal.
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activity further. After six injections, the luciferase activity of the
tumors was reduced to 49.5%� 8.1% of the initial activity
(3.1 × 106 photons∕s versus 6.5 × 106 photons∕s; p < 0.001).
In the M21-L tumors, no induction of luciferase activity
could be detected; similar luciferase activity as in the untreated
controls was observed (Fig. 3).

3.2 Immunoblot Analysis

Immunoblot analysis in the M21 tumors showed a correspon-
dence between protein products and time when luciferase
transcription was controlled by the Hsp70 promoter. Protein
production was 2.9-fold higher at 12 h and 4.5-fold higher at
24 h after injection of the RGD-NP/RAF(-) complex; this
decreased to 2.3-fold higher after 48 h, and further to
1.2-fold higher after 72 h, than the baseline HSP70 production.
The HSP70 protein production was significant higher
(p < 0.001) at 12 and 24 h after injection of the RGD-NP/
RAF(-) complex compared to the baseline HSP70 protein. In
the M21-L tumors, no increase in HSP70 protein could be
detected. Comparing the HSP70 protein production in the
M21 to the M21-L tumors at the different time points significant
differences could be found (p < 0.01) (Fig. 4).

3.3 Histology

With H&E staining, the M21 tumor tissue appeared to be dense.
The tumor tissue was infiltrated with fibrous septa, and no
significant areas of tumor necrosis could be found. However,
after antiangiogenic therapy, significant tissue changes were
found. This tissue showed irregular necrotic areas characterized
by condensation and pyknosis of nuclear chromatin and shrink-
age and hypereosinophilia of cell cytoplasm. The tumor tissue
structure was less dense, and dilated tumor vessels could
be found.

Moreover, TUNEL staining indicated a number of cells with
markedly increased positive staining, as compared with the
untreated tumors. Several apoptotic cells were observed
among the remaining viable cells (Fig. 5).

4 Discussion
Angiogenesis is required for tumor progression. However,
antiangiogenic agents have infrequently been tested in patients
with advanced melanoma. Experience with most other cancers
suggests that single-agent application of angiogenic inhibitors
is unlikely to have substantial clinical antitumor activity in
melanoma.

The integrin αvβ3 can function as a receptor for vitronectin,
and it appears to play a critical role in melanoma growth and in
further metastasis.29 This integrin is specific for tumor-
associated vasculature and is required for melanoma cell survi-
val. Moreover, αvβ3-blockade has produced antitumor effects in
preclinical models.30 In the study of Hood and Cheresh,13

it was demonstrated that αvβ3-targeted delivery of ATP-Raf
to blood vessels caused tumor regression because of the ability
of this agent to promote apoptosis of the angiogenic
endothelium.

In the present study, we combined this type of antiangiogenic
therapy with bioluminescence imaging and confirmed our
results by western blot analysis, as well as a histological analy-
sis, of the tumor tissue. Bioluminescence imaging is a broadly
applicable technology for assessing biological processes in vivo.
The opportunity for spatial and temporal quantification of the
CMV and Hsp70 promoter efficiency has become possible
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using this technology.30 As luciferase activity can be measured
in living cells31 and tissues32,33 and can provide a read-out of
increases and decreases in transcription, it is an ideal real-
time transcriptional reporter for indicating levels of Hsp70
transcription and for providing in vivo information on tissue
viability.33

In the present study, we did not see a regression in the size of
the treated tumors. The tumor size in our study was approxi-
mately two times greater than that in the study by Hood and
Cheresh.13 However, over time, we did observe a significant
reduction in the luciferase activity in the CMV-luc transfected
M21 cell line, indicating a decrease in viable tumor cells.33 The
constant size of the tumor and the absence of tumor regression
are therefore not signs of treatment failure. In targeted tumor
therapy, such as with the use of angiogenesis inhibitors and anti-
vascular therapies, necrosis and cavitation—without a change in
size—are frequently observed. For example, single-agent treat-
ment with sorafenib34 and bevacizumab35 in metastatic renal cell
cancer failed to achieve significant objective response rates
according to the RECIST criteria but did result in a significant
increase in progression-free survival (PFS), demonstrating its
clinical efficacy.

In the untreated control group, a progressive growth of the
tumors and a progressive increase in luciferase activity were
observed. Hood and Cheresh showed that a therapeutic effect
of αvβ3-targeted delivery of ATP-Raf could be achieved with
several components contributing to its pronounced antitumor
activity.13 First, the NPs have multivalent targeting to integrin,
enabling selective delivery of genes to angiogenic blood vessels.
Second, the mutant Raf-1 gene, when delivered to these tissues,
influences the signaling cascades of two prominent angiogenic
growth factors, bFGF and VEGF.13 The robust proapoptotic
activity of this gene is consistent with previous studies that
have indicated a role for Raf-1 in promoting cell survival.36

In the present study, we have observed the same effect of this
antiangiogenic therapy, as in the Hood and Cheresh study, which
demonstrated histologically that 24 h after RGD-NP/RAF (-)
injection, TUNEL-positive cells were detected only among
those vessels that had been transduced. The authors showed
that αvβ3-targeted delivery ofATPμ-Raf to blood vessels caused
tumor regression because of its ability to promote apoptosis of
the angiogenic endothelium. In our study, we applied the RGD-
NP/RAF(-) complex seven times and found significant changes
in the relevant tissue. The tissue showed irregular necrotic areas
characterized by condensation and pyknosis of nuclear chroma-
tin and shrinkage and hypereosinophilia of the cell cytoplasm.
The tumor tissue structure was less dense, and dilated tumor ves-
sels could be observed. While TUNEL staining of untreated
tumors showed only a few apoptotic cells in the treated tumors,
several apoptotic cells were observed between the necrotic tis-
sue and the few remaining viable cells. The highest luciferase
activity was seen at 24 h after injection of the RGD-NP/RAF(-)
complex, correlating positively with the highest HSP70 produc-
tion, as confirmed by western blot analysis. The high luciferase
activity is an indirect parameter of the induction of HSPs itself,
which was confirmed by western blot analysis. The goal of
HSP70 protein induction is the development of tolerance as a
reaction of the cells to a variety of stresses due to the antiangio-
genic therapy, including hypoxia,17 ischemia,18 acidosis,19 and
energy depletion.20 Thus, our results are in accordance with
those of Hood and Cheresh,13 who found that maximal lucifer-
ase activity was detected in the tumors 24 h after injection of
αvβ3-NP coupled to 25 μg of luciferase. In their experiment,
only minimal luciferase was detected in the lungs and heart,
and no detectable expression was found in the liver, brain,
kidney, skeletal muscle, spleen, and bladder. In our study, we
observed that the luciferase activity decreased with each
treatment cycle—indicating the decrease in viable tissue—
independent of whether transcription was controlled by the
CMV or the Hsp70 promoter.

Such an experimental approach combines the therapeutic
effect of antiangiogenic therapy with in vivo imaging of gene
expression and tissue changes. It enables the study of specific
genes under the effect of the therapy, thus providing precise
information on therapeutic efficacy.
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