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Abstract

Significance: The non-destructive characterization of cardiac tissue composition provides essen-
tial information for both planning and evaluating the effectiveness of surgical interventions such
as ablative procedures. Although several methods of tissue characterization, such as optical
coherence tomography and fiber-optic confocal microscopy, show promise, many barriers exist
that reduce effectiveness or prevent adoption, such as time delays in analysis, prohibitive costs,
and limited scope of application. Developing a rapid, low-cost non-destructive means of
characterizing cardiac tissue could improve planning, implementation, and evaluation of cardiac
surgical procedures.

Aim: To determine whether a new light-scattering spectroscopy (LSS) system that analyzes
spectra via neural networks is capable of predicting the nuclear densities (NDs) of ventricular
tissues.

Approach: We developed an LSS system with a fiber-optics probe and applied it for measure-
ments on cardiac tissues from an ovine model. We quantified the ND in the cardiac tissues using
fluorescent labeling, confocal microscopy, and image processing. Spectra acquired from the
same cardiac tissues were analyzed with spectral clustering and convolutional neural networks
(CNNs) to assess the feasibility of characterizing the ND of tissue via LSS.

Results: Spectral clustering revealed distinct groups of spectra correlated to ranges of ND.
CNNs classified three groups of spectra with low, medium, or high ND with an accuracy of
95.00� 11.77% (mean and standard deviation). Our analyses revealed the sensitivity of the
classification accuracy to wavelength range and subsampling of spectra.

Conclusions: LSS and machine learning are capable of assessing ND in cardiac tissues. We
suggest that the approach is useful for the diagnosis of cardiac diseases associated with changes
of ND, such as hypertrophy and fibrosis.
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1 Introduction

Optical technologies for medical diagnosis have advanced rapidly over the last several decades.
A broad category of these new technologies characterized as “optical biopsies” uses the
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interaction of light with tissue for its in-vivo characterization and disease diagnosis—in effect
replacing traditional biopsy based on tissue extraction. These light-tissue interactions are lever-
aged for tissue characterization by various optical modalities, including fluorescence imaging,
multi-photon microscopy, spectroscopy, and tomography. Due to their diagnostic effectiveness
combined with miniaturization and low cost, these technologies show promise as an effective
means to improve patient care while reducing expense.

Miniaturization of optical components such as lenses and the development of coherent opti-
cal fiber-optic bundles have enabled the integration of optical technologies into catheters for use
in a variety of previously unattainable regions, such as in-vivo pulmonary and cardiac applica-
tions. Fiber-optic confocal microscopy (FCM) and optical coherence tomography (OCT) are
examples of optical technologies being explored for use in the heart.1–4 These imaging modalities
show promise in interventional cardiology and cardiac electrophysiology.5 OCT is also being
explored for the guidance of interventional cardiac procedures such as stent placement.2,6,7

Clinical studies and related research with FCM have shown the ability to identify conductive
tissue regions during congenital heart surgery, e.g., the sinoatrial and atrioventricular nodes.8,9

Although these technologies have been shown to provide useful information during cardiac
procedures, the significant cost and technical complexity associated with their implementation
hinder widespread adoption. Additionally, shallow imaging field depths limit the application of
these technologies to only a few specific use cases in the heart.10,11

Spectroscopic approaches using light in the visible and near-infrared spectrums are prom-
ising alternatives that could decrease overall cost and complexity while increasing the depth of
tissue characterization by leveraging the physics of light transport and scattering in tissue.1,10,12

Although spectroscopic approaches are capable of gathering information from deeper within
tissue samples, they result in significantly lower spatial resolution when compared to FCM and
OCT. Of the numerous spectroscopic approaches that have been developed, this study is focused
on implementing light-scattering spectroscopy (LSS), which is an established approach used in
research laboratories and clinical settings to study a variety of systems throughout the body.13–15

LSS measures the scattering of light of different wavelengths in a medium with discrete particles.
Several properties of the particles within a medium, such as density, size, and shape, contribute to
the scattering behavior. Gathering spectra from tissue samples can yield information about the
size and distribution of nuclei as well as other characteristics of the tissue, such as chromatin
content.14

Many cardiac diseases such as myocarditis, amyloidosis, and other cardiomyopathies as well
as allograft rejection are diagnosed by observing and quantifying microstructural abnormalities.
The current gold standard for diagnosis of these diseases is retrieving a biopsy of cardiac tissue,
a procedure associated with significant risk. LSS as a means of characterizing abnormal micro-
structural changes in cardiac tissue has the potential to decrease the risk and harm associated with
diagnosing and monitoring these diseases by gathering information from the tissues in a non-
destructive manner. An important foundation that needs to be established for the development of
LSS toward application in these cardiac diseases is the sensitivity of the LSS spectra to changes
in the scattering profile of tissue and its correlation with changes in the underlying tissue, such as
the density of myocyte nuclei.

We investigated the ability of LSS to identify the nuclear densities (NDs) of the myocardium
in combination with machine learning. Machine learning is increasingly utilized to overcome
challenges related to analyzing complex signals such as spectra.16–18 Previously, our research
group demonstrated the ability of a machine learning approach, i.e., a convolutional neural net-
work (CNN), to detect fibrosis in FCM images taken in a beating heart in situ.19,20 Other previous
studies explored machine learning for cardiac ablation lesion quantification21 and diagnosis of
ischemic heart disease.17,22

Here, we introduced a novel system for broad-spectrum LSS for applications in cardiology
and cardiac surgery. This system measured spectra from cardiac tissues of an ovine model span-
ning a large range of gestational ages, including pre-term and adult. Previous work on cardiac
tissues from ovine models showed a decrease in ND with age.23,24 Here, we applied this finding
to evaluate the ability of machine learning to identify the relative ND in these ovine hearts.
Spectra were analyzed using unsupervised and supervised machine learning methods, i.e., spec-
tral clustering and 1D CNNs. We used fluorescent labeling confocal microscopy and image
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processing to measure NDs in cardiac tissues. These values were then used as ground truth for
training neural networks to predict ND from measured spectra.

2 Methods

2.1 LSS System

A customized LSS setup was developed for application in cardiac tissue. A custom-built spec-
troscopy probe (Berkshire Photonics, Washington Depot, CT) was used to both illuminate the
tissue with broad-spectrum light and gather light from the tissue. The setup shown in Fig. 1
includes a stabilized tungsten-halogen broad-spectrum light source (SLS201L/M, Thorlabs,
Newton, New Jersey) providing light in the 350- to 2000-nm range, two Czerny-Turner type
charge-coupled diode (CCD) spectrometers (CCS175/M, Thorlabs), a computer with spectrum
acquisition software (OSA, Thorlabs), and the spectroscopy probe.

The probe utilized a single 200-μm core diameter central illumination fiber (FVP200220240,
Molex, Phoenix, Arizona) accompanied by four 100-μm core diameter light collection fibers
(FVP100110125, Molex). These four light collection fibers were fixed into positions along two
orthogonal radial arms adjacent to the central illumination fiber, with two of the four fibers posi-
tioned along each of the arms. Figures 1(b) and 1(c) show the arrangement of the fibers at the tip
of the probe. The two fibers along each arm were positioned with center-to-center distances of
210 and 345 μm from the illumination fiber. The fibers positioned 210 μm from the central
illumination fiber were connected to a single CCD spectrometer, and the fibers positioned at
345 μm were connected to a separate spectrometer. These two sets of fibers are referred to col-
lectively as the R1 and R2 fibers, respectively. The arrangement of two sets of fibers equidistant
yet orthogonal in relation to the central illumination fiber was chosen to mitigate the effects of
optical anisotropy inherent in cardiac tissue.25 The tip of the probe comprises a 1.7-mm outer
diameter stainless steel tube and a 1-mm thick laser-cut quartz glass end cap into which the

Fig. 1 Spectroscopy system. (a) System overview. Broad-spectrum light was applied to tissue
using an illumination fiber. Backscattered light was collected by collection fibers and measured
by Czerny-Turner type CCD spectrometers. (b) Schematic view of fiber arrangement showing
central illumination fiber and orthogonal fiber pairs for collecting light. (c) Tip of prototype LSS
probe.
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illumination and absorption fibers are fixed using epoxy. A prior study established the capabil-
ities of this system regarding quantifying depth, arrangement, and composition of fibrotic cardiac
tissues.20

2.2 Spectroscopy of Cardiac Tissue

The LSS system was used to gather spectra from ovine ventricular tissue according to the process
outlined in Fig. 2. All animal usage was approved by the Institutional Animal Care and Use
Committee (IACUC) at Boston Children’s Hospital. We obtained an ∼1 cm3 transmural tissue
sample from the right ventricular free wall (RV) of formalin-fixed hearts from 18 animals with
gestational ages ranging 4.3 to 56 months. Two additional samples from the left ventricular free
wall and ventricular septum of the two youngest hearts brought the total sample size to 22.
Samples were placed on a black foam pad and kept submerged in phosphate-buffered saline
(PBS) before and during spectroscopy. Black open-cell foam prevented backscattering of
photons after passing through the sample. Samples were examined using LSS to identify changes
in ND. The LSS probe was positioned on the epicardial surface at multiple locations to gather
20 spectra for each sample. The spectra were gathered with an integration time of 200 ms.
Spectra were recorded with full width at half maximum resolution of 0.6 nm in the wavelength
range of 500 to 1100 nm. Following acquisition, the spectra were saved for analysis. Tissue
samples were stored in PBS for histology. Each spectrum was normalized to its mean intensity.

Fig. 2 Experimental design. (a) Spectra were gathered from ∼1 cm3 transmural samples of fixed
ovine hearts. (b) A 100-μm thick section from the transverse center of the tissue sample at the
same location as for spectroscopy. The section of tissue was stained with WGA and DAPI. The
spectra from (a) and measured ND from (b) were applied for (c) machine learning. Also, spectra
and measured ND were used to test the prediction of NDs.
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The spectra were then filtered using a 1D gaussian filter with a standard deviation of 20 measures
(∼3.3 nm) and a kernel size of 80 measures.

2.3 Histology

After spectral measurements, tissue samples were sectioned within the probed region at the
center of each sample. A vibratome (Leica Model VT1200S, Wetzlar, Germany) was used to
section at 100-μm thickness perpendicular to the epicardial surface and parallel to the transmural
plane of the ventricular wall. This orientation was chosen to include light scattering structures
throughout the thickness of the ventricular wall. After sectioning, glycoconjugates of the
extracellular matrix and glycoproteins of cell membranes were labeled using wheat germ
agglutinin (WGA) conjugated to a fluorophore (WGA CF488A Conjugate, Biotium, Fremont,
California). Cell nuclei were stained with 1 μM 6-diamidino-2-phenylindole (DAPI, D3571,
Life Technologies, Carlsbad, California) according to a previously established protocol.26 All
sections were washed in PBS and mounted on a glass slide with Fluoromount-G (#17984-25,
Electron Microscopy Science, Hatfield, Pennsylvania).

A Leica SP8 confocal microscope with a 40× oil immersion lens (numerical aperture 1.3)
was used to scan each section. Two-dimensional tile scans with a pixel size of 0.2 μm spanning
695 μm × 2467 μm were performed for the capture of cardiac tissue, including the epicardium.
DAPI and the WGACF488A Conjugate were excited with a 405 nm and 488 laser, respectively.

Two or more different tile scans from each sample were used to calculate the ND. Manual
segmentation was performed using the Fiji/ImageJ image processing software package.27

Histogram-based thresholding (mode + 2 standard deviations) isolated nuclei in the DAPI
images. Gaussian blurring with a sigma of 2 followed by erosion and dilation removed small
segments. Connected nuclei were separated using a watershed function. Visual inspection of
segmented images validated segmentation methodology. Automated segmentation and counting
were performed to validate the ND values gathered from the manual segmentation. This was
performed using Python 3.8.2 while following the same operands as the manual segmentation.
The image processing was primarily done using the package scikit-image (0.17.2).28 For both the
manual and automated methods, ND was calculated by dividing the number of detected nuclei
by the tissue area. The average ND produced by the manual segmentation for each tissue sample
provided the ground truth for machine learning.

2.4 Assessment of the Spectra–ND Relationship by Cluster Analysis

Unsupervised and supervised machine learning approaches were used to explore whether spectra
gathered from the LSS system allowed for differentiation between the ND of the preparations.
We employed MATLAB (2019b, MathWorks, Natick, Massachusetts) and its Deep Learning
Toolbox for unsupervised learning evaluation of the correlation between LSS spectra and the
measured ND.

We explored normalized, filtered, and concatenated spectra from the paired collection fibers.
Each spectrum was annotated with the ND of the sample from which it was measured. We
applied the MATLAB function spectralcluster to identify clusters of spectra from preparations
of different NDs using the Euclidean distance metric. From this spectral clustering analysis, we
generated a similarity graph between nodes of the first and second principal components of the
spectra.29 Analysis of the eigenvalues from the spectral cluster function indicated the spectra fell
into five distinct groups. We utilized the MATLAB function gscatter to visualize the spread of
the spectral set, with the resulting groups identified by color. Groups were associated with the
NDs of the spectra contained in each group. The principal components analysis (PCA) was
performed, and the first two principal components were used to visualize any potential groups
within the dataset. A one-way ANOVA and Tukey-Kramer post hoc test using a significance
level of 0.05 was used to identify differences between the clustered spectra. A box and whisker
plot was created from these data, which compared the NDs associated with the spectrum within
each group produced from the spectral clustering. Significant differences between clusters were
indicated by brackets.
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2.5 Assessment of the Spectra–ND Relationship by CNN

We applied CNNs to differentiate NDs based on spectra from LSS. This work was built upon our
previous work on identifying fibrosis from in vivo confocal imaging.19 Our software framework
was based on Python scripts and the Keras neural network API (2.3.1)30 with Tensorflow
(2.2.0).31 We designed a CNN to classify the spectra into three groups of ND 0 to 2000,
2000 to 3800, and above 3800 nuclei∕mm2.

The CNNs were systematically trained and validated using a form of k-fold cross-validation
called leave-one-out cross-validation (LOOCV).32 This approach entailed creating 22 different
unique datasets, each of which removed the spectra gathered from one of the 22 different sam-
ples. This removed sample of spectra was separated for use as a testing dataset for each fold.
Another sample was also randomly selected from the then remaining 21 samples in each fold to
be removed and used as a validation dataset to guide hyperparameter optimization. In all, for
each LOOCV performed, 22 networks were trained, each on a training dataset that consisted of
the spectra from 20 different samples, less the validation and training samples. To address and
reduce the likelihood of the networks overfitting the datasets, initial network hyperparameters
were selected that minimized the number of trainable parameters.

Two tests were performed to determine the potential sensitivity of the networks to specific
wavelength ranges and to also determine the sensitivity of the networks to the resolution of the
spectra. An initial network configuration was selected (Table 1). Hyperparameter variations were
later performed using this network structure as a base. To determine the sensitivity of the net-
works to wavelength ranges, three training sessions of LOOCV were performed on spectra
consisting of wavelengths 500 to 700 nm, 700 to 900 nm, and 900 to 1100 nm, respectively.
One-way ANOVA and posthoc test using Fisher’s least significant difference method with a level
of 0.05 were applied to determine any significant differences between the accuracies reported for
each wavelength range. To determine the sensitivity of the networks to the resolution of the data,
15 LOOCV training sessions were performed using spectra with resolutions reduced by
15 different scales, K, distributed logarithmically between 10 and 1000. The spectra were
downsampled using a 1D linear interpolation between every Kth point in the original spectra.
When using the network structure outlined in Table 1 in conjunction with the downsampled
spectra, the number of trainable parameters within the networks varied between 1755 and
135, for scales of 10 and 1000, respectively. Beyond the hyperparameters described in
Table 1, both the wavelength-dependency and the resolution-reduction LOOCV training sessions
were performed using a learning rate of 0.005 for all networks. Training for these sessions was
terminated early if the loss did not decrease by more than 0.001, a value referred to as the “mini-
mum delta” during parameter variations, after 100 epochs; otherwise, the training was permitted
to run up to 1000 epochs. The categorical cross-entropy was calculated from the logits produced
from the final layer of the network for use during the training process and post-analysis. This loss
function was selected because each spectrum belongs to only one of the three ND ranges.

Although hyperparameter variation was not performed during these training sessions, a
validation sample was still removed from the training dataset in addition to the testing sample.
Network weights were saved during the training process when the loss value decreased. The
network weights resulting in the lowest loss value were restored at the end of the training session.
The predicted classes from the testing datasets for each fold were then compared to the assigned
classes for each spectrum based on ND values. From this comparison of aggregated predictions,
we calculated the accuracy for the CNN topology on the entire LOOCV as follows:

Table 1 CNN Configuration.

Layer # Layer type Parameters

1,2,4 1D convolutions Filter Number: 3, Kernel Size: 5, Stride: 2, Activation: ReLU

3,5 1D Max Pooling Stride: 2, Pool Size: 2, Padding: None

6 Softmax Exponential activation layer for multi-class classification
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EQ-TARGET;temp:intralink-;e001;116;735Accuracy ¼ ncorrect
ntotal

; (1)

where ncorrect is the number of correct predictions, and ntotal is the total number of predictions.
To improve the accuracy of the predictions resulting from the LOOCV, the above training

process was altered to introduce hyperparameter variations within each training fold. Multiple
networks were trained using the base topology outlined in Table 1 to maintain a low number of
trainable parameters while varying the learning rate. The resolution of the spectra was also
reduced by a factor of 50 using the methods described previously. This reduction decreased
the number of trainable parameters while still maintaining most of the variations within the spec-
tra that remained after filtering and produced a network topology with 441 trainable parameters.
Ten different learning rates, logarithmically distributed between 0.0001 and 0.01, were used as
well as four different minimum delta values: 0.001, 0.003, 0.005, and 0.007. The randomly
selected validation sample associated with each network was then used to determine the vali-
dation accuracy and loss values of the network. The optimal learning rate and minimum delta for
each network were selected based on the highest accuracy value reported. In cases where more
than one hyperparameter set resulted in the same highest accuracy value, the hyperparameter set
with the lowest validation loss score between them was selected. Once optimal hyperparameter
values were selected for each of the 22 folds of the LOOCV, the optimal networks for each fold
were used to predict the classes of their respective testing datasets. The average accuracy value of
these predictions was then calculated using Eq. (1).

3 Results

3.1 Spectroscopy of Tissue Samples

We gathered 440 spectra from two collection fibers from 22 samples. Raw spectra displayed a
moderate degree of variability in intensity within samples and in-between samples. Spectra from
R1 and R2 were different with respect to intensity range and shape [Figs. 3(a) and 3(d)].

Fig. 3 Comparison of spectra for selected gestational ages within the ranges of 0-5, 5-8, 8-13, and
13+ months. (a) Raw spectra from R1. (b) Averaged spectra for each age range from R1 after
normalization and filtering. The black box indicates the region highlighted in 3C. (c) Enlarged view
of the region indicated with a black box in 3B. This region was selected as it shows where the four age
ranges differ significantly from each other. (d) Raw spectra from R2. (e) Averaged spectra for each
age range from R2 after normalization and filtering. The black box indicates the region highlighted in
3F. (f) Enlarged view of the region indicated with a black box in 3E. This region was selected as it
shows that spectra from tissues of different age ranges differ from each other.
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After normalization to their respective means, spectra from an individual sample exhibited a high
correlation with the other spectra from the same sample (R2 ≥ 0.999). Differences between spec-
tra from different samples were subtle (R2 ¼ 0.996� 0.002). Figures 3(b) and 3(e) show mean
spectra with standard deviations from four representative age groups. Figures 3(c) and 3(f)
highlight regions within the spectra that present differences across the dataset associated
with age.

3.2 Histology and Determination of ND

Representative transmural confocal microscopy tile scans of RV free wall myocardium are
shown in Fig. 4. Images of DAPI revealed higher ND and smaller myocytes in samples for
younger animals vs. samples from older animals (Fig. 5). Decreases of ND in samples of
4.3, 6.5, and 56 months gestational age are visible in 250 μm × 250 μm confocal images shown
in Figs. 5(a)–5(c). Increased size of cardiac myocytes is visible from WGA images of the same
samples is evident in Figs. 5(d)–5(f). Composite images are presented in Figs. 5(g)–5(i).

Manual segmentation using ImageJ indicated a 72.5% difference in ND between samples of
4.3 months and 10 months gestational age and a 78.2% difference in ND from 4.3 to 56 months.
Automated segmentation yielded a 65.4% and 77.8% decrease in ND for the same age
differences. The reduction of ND with age in our samples is summarized in Fig. 6(a) and con-
sistent with prior studies.23 ND differences between segmentation methods varied most for
samples from the youngest hearts. Figure 6(b) shows the measured values for each segmentation
method. The correlation between segmentation methods was high (R2 ¼ 0.94). Although the
results from both the manual and automated segmentation techniques were similar, the values

Fig. 4 Transmural section of heart wall from a 4.3-month old animal from confocal microscopy.
(a) Nuclei stained with DAPI. (b) Extracellular matrix staining with WGA.
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resulting from the manual segmentation were selected as ground truth for the duration of the
study as they more closely reflected the reduction in ND over time in the literature.22

3.3 Cluster Analysis of Spectra

Dimensionality reduction via PCA revealed that the first two principal components accounted for
∼95% of the variance between spectra. The cluster analysis revealed five clusters [Fig. 7(a)].
Two of the clusters contained only 20 spectra, and each contained spectra from only a single
sample, whereas the other three clusters contained over 100 spectra with at least five samples in
each cluster. Only a small percentage of spectra were not assigned to the same cluster as the
majority of the spectra from the same tissue sample. In sum, a total of 23 of the 440 spectra
(∼5%) were miscategorized. Clusters were labeled 1 to 5 with increasing ND. Differences in ND
were significant for many of the clusters [Fig. 7(B)]. For instance, NDs of clusters 3, 4, and 5
were different from clusters 1 and 2. Differences of ND for clusters 1 and 2, corresponding to the
samples of lowest ND, were not significant.

3.4 CNN-Based Classification of ND Grouping

We explored the sensitivity of the CNN to different wavelength ranges. Accuracies of 59� 46%,
40� 48%, and 76� 33% resulted from the wavelength ranges 500 to 700 nm, 700 to 900 nm,
and 900-1100 nm, respectively. Differences between the 500 and 700 nm and 700 and 900 nm

Fig. 5 Confocal images of cardiac tissue at gestational ages of (a) 4.3, (b) 6.5, and (c) 56 months.
(a)–(c) DAPI labeled cell nuclei. (d)–(f) WGA labeled extracellular matrix and capillaries.
(g)–(i) Composite DAPI and WGA images.

Knighton et al.: Toward cardiac tissue characterization using machine learning and light-scattering. . .

Journal of Biomedical Optics 116001-9 November 2021 • Vol. 26(11)



ranges were not significant. Also, differences between the 500 and 700 nm and 900 and 1100 nm
ranges also were not significant. Accuracies for the 900 and 1100 nm were higher than for 700 to
900 nm (p-value: 0.0075). The exploration of the sensitivity of the network to the resolution of
the spectra resulted in accuracies ranging from 67% to 95%. There were no statistically signifi-
cant differences between the LOOCV sets based on the reduction in data resolution. Two
reduced resolution datasets resulted in accuracies above 90%, i.e., the datasets reduced by factors
of 37 and 268. The dataset reduced by a factor of 1000 resulted in an accuracy of 83� 31%. The
accuracy from the optimal hyperparameters for each fold of the training process was 95� 12%.
Classifications of spectra for this final network are summarized in the confusion matrix in Fig. 8.
Among the 22 optimized networks, all the minimum delta values of 0.007, 0.005, 0.003, and

Fig. 6 Counting of cell nuclei. (a) Scatterplot and regression fit of measured NDs relative to age.
(b) Comparison of NDs from different segmentation methods.

Fig. 7 Spectral clustering of spectra measured from cardiac tissues. (a) The clustering identified 5
clusters shown in a principal component plot. (b) NDs of several identified clusters were different.
Bracket identified clusters that are statistically different from one another at a 5% confidence level.
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0.001 were selected 2, 6, 7, and 7 times each. Of the possible learning rates only five, 0.01,
0.00615, 0.00378, 0.00233, and 0.00143, were selected. These learning rates occurred 5, 9,
5, 2, and 1 time, respectively.

4 Discussion

The presented studies suggest that the developed LSS system can predict NDs in cardiac tissue
samples within predefined ND ranges based on CNNs. The studies were based on microscopy
and image processing, which showed decreases in ND on the order of 70% between hearts of
4.3 to at least ten months gestational age. This decrease is consistent with previously observed
values.23,24,33 NDs were identified by two separate machine learning approaches. Spectral
clustering in a dataset of spectra identified five clusters with similar NDs. Also, a CNN allowed
us to classify spectra into three predefined ND ranges with a high (>90%) accuracy.

LSS is particularly well suited to identify the change in the relative distribution of major
cellular components such as nuclei, which have long been recognized as major sources of light
scattering.34,35 The distribution of nuclei and extracellular matrix components is a hallmark of
certain tissue structures and pathologies of the cardiovascular system. Changes in these distri-
butions and structures can be expected to alter the behavior of light scattered by the tissue.

LSS relies on the wavelength-specific absorption and scattering of photons by cellular and
subcellular structures as well as constituents of the extracellular matrix.12,34,36 The optical proper-
ties of the tissue constituents determine the type and probability of light-tissue interactions. A
fraction of the photons is backscattered and detected by a spectrometer. Predominant sources of
scattering are cellular membranes, mitochondria, and nuclei.

It is well understood from animal models that the ND of heart muscle decreases in maturing
neonates as the cardiac myocytes grow.23,24 However, the total number of myocytes and the
number of their associated nuclei change little. This results in the age-related change in ND
that was utilized for our study assessing our LSS system.

Analysis of LSS spectra is often a time-consuming endeavor based on simplified models and
mathematical simulations of light-tissue interactions.13,15,35 Early work on LSS systems applied
to biological tissue relied on the derivation of simplified models or complex Monte Carlo sim-
ulations to identify changes in spectra that correlated to changes in the relative distribution of
specific scatterers.14,35 Currently, a general framework does not exist for analyzing LSS spectra
from cardiac tissues. Here, we used machine learning to generalize analyses of spectra. We
utilized two approaches to analyze NDs based on LSS spectra, i.e., spectral clustering and

Fig. 8 Confusion matrix of aggregated CNN predictions of NDs from spectra. The resulting
classifier accuracy was higher than 90%.
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a CNN. With spectral clustering, spectra were grouped independently of any human input, which
revealed a relationship between spectra and ND. The advantage of this approach is the potential
for automated and rapid identification of ND without the need for additional human input or
preprocessing of the spectral signal. We suggest that due to the minimal preprocessing involved,
our analysis approach can be extended to an LSS system capable of real-time mapping of cardiac
regions based on their spectral signatures.

Our second approach for the prediction of NDs from spectra was based on CNNs and
histological quantification of NDs. The high accuracy of our predictions using LOOCV dem-
onstrated that the CNN can reliably classify spectra into predefined ND groups. CNNs perform
feature extraction and dimensionality reduction intrinsically, thus reducing or removing the need
for preprocessing frequently required when working with spectral data. For these reasons, CNNs
are well suited to handle raw signals.37 This means that analysis of spectra by CNNs has the
potential to replace many of the current computationally expensive approaches for preprocessing
and analysis of spectra.15,16,36 However, we note difficulties in applying a CNN for regression to
quantify NDs from spectra. We noted a large variation in ND in our samples, which may have
inhibited the ability of a regressor CNN to quantify NDs from spectra.

Monitoring of cell density, the fraction of extracellular components such as collagens, and the
degree of cellular infiltration is essential to diagnosis and treatment planning for certain types of
heart disease. Our studies indicate that LSS can provide a rapid means of tissue characterization
in the heart. There is no destructive process required for this tissue characterization. Due to the
simplicity of the developed LSS probe, it could be single-use disposable. This constitutes an
advantage over many existing modalities such as FCM or OCT, where probes are expensive
each due to their technical complexity and require sterilization protocols.38

Potential applications of the developed LSS system include the diagnosis of heart diseases.
Decreases in myocyte density and increases in cellular infiltrates are a hallmark of hypertrophy
and myocarditis, respectively.39 Also, fibrosis and infarctions are characterized by changes in
ND. Another application of the developed system could be surveillance of heart transplant
patients for cellular rejection. The gold standard for surveilling heart transplant rejection is
performing an endomyocardial biopsy.40 First developed in the 1960s and 1970s, the procedure
requires removing small amounts of tissue from the ventricular septum. Endomyocardial biopsy
is associated with significant complications 41,42 and is often performed ten to twenty times in the
first year after a heart transplant. LSS has the potential to allow for cardiac transplant rejection
surveillance without the need for endomyocardial biopsy and tissue removal.43

The results of our experiments with a reduced resolution spectral dataset indicate that a spec-
trometer with nanometer wavelength resolution is not necessary to achieve a high level of accu-
racy for ND prediction via CNN. The LSS system could be based on spectrometers with lower
wavelength resolution. This finding can inform the cost-effective design of future LSS systems.

A limitation of our work is that we ignored intensity differences and normalized the spectra to
the mean intensity before analyses. Our motivation was to reduce the effects of attenuation of
spectra due to bending of the optical fibers and suboptimal connection of fibers to the spectrom-
eter. Also, we applied a simple Gaussian filter to remove noise. The filter parameters were deter-
mined by visual inspection of a Fourier analysis of a representative sample of the dataset. The
standard deviation of 20 spectral measures was selected due to it removing the majority of the
noise from the signal while still preserving the more subtle fluctuations in the spectra. More
advanced filters might improve the reduction of noise in the spectra. We note also limitations
regarding the specific approach to machine learning used in this study. We only investigated
CNNs for classification. Other methods of machine learning, such as fully connected neural
networks and k-means clustering, could yield similar or higher levels of accuracy and perfor-
mance. We also acknowledge the limitations associated with the size of the dataset used for this
study. A larger dataset could improve the performance of the networks trained in this study,
potentially resulting in a successful regression estimation of NDs from LSS data. Due to the
size of the datasets used, our networks could overfit the training dataset during the training proc-
ess. We used LOOCV, where the hyperparameter variation was performed on data that were
separate from the training and testing datasets, to prevent biasing the network to the testing
dataset. We also kept the number of trainable parameters small in our networks, <500, to mitigate
overfitting during the training process. Although a minimal hyperparameter search was
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performed, we acknowledge that this study was focused on whether the LSS system combined
with neural networks would be capable of characterizing tissues according to nuclear densities,
not on producing a fully and thoroughly optimized network for performing this characterization.
Future work will focus on improving and refining the LSS system, the associated data processing
pipeline, and the machine learning techniques used to classify the data.

5 Conclusions

Two machine learning approaches, spectral clustering and CNNs, allowed us to identify, with high
accuracy, a range of NDs in cardiac tissues using spectra gathered by a customized LSS system.
The described system is of low technical complexity and cost. The combination of LSS and
machine learning constitutes a useful and affordable tool for the diagnosis of cardiac tissues for
diseases hallmarked by microarchitectural changes. The presented approach has applications in
monitoring and diagnosing heart diseases such as hypertrophy, fibrosis, and myocarditis. A further
application is transplant rejection surveillance in lieu of traditional endomyocardial biopsy.
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