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ABSTRACT. Purpose: Eye morphology varies significantly across the population, especially for
the orbit and optic nerve. These variations limit the feasibility and robustness of gen-
eralizing population-wise features of eye organs to an unbiased spatial reference.

Approach: To tackle these limitations, we propose a process for creating high-res-
olution unbiased eye atlases. First, to restore spatial details from scans with a low
through-plane resolution compared with a high in-plane resolution, we apply a deep
learning-based super-resolution algorithm. Then, we generate an initial unbiased
reference with an iterative metric-based registration using a small portion of subject
scans. We register the remaining scans to this template and refine the template
using an unsupervised deep probabilistic approach that generates a more expan-
sive deformation field to enhance the organ boundary alignment. We demonstrate
this framework using magnetic resonance images across four different tissue con-
trasts, generating four atlases in separate spatial alignments.

Results: When refining the template with sufficient subjects, we find a significant
improvement using the Wilcoxon signed-rank test in the average Dice score across
four labeled regions compared with a standard registration framework consisting of
rigid, affine, and deformable transformations. These results highlight the effective
alignment of eye organs and boundaries using our proposed process.

Conclusions: By combining super-resolution preprocessing and deep probabilistic
models, we address the challenge of generating an eye atlas to serve as a stand-
ardized reference across a largely variable population.
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1 Introduction
Significant variation in human eye morphology, especially in the shape and size of the orbit and
the optic nerve sheath diameter (ONSD), presents challenges in medical imaging to generalize
population-wise features of eye organs to a spatial reference image. Different volumetric imaging
modalities capture distinct perspectives on eye morphology. Typical imaging modalities include
computed tomography (CT), magnetic resonance imaging (MRI), ultrasonography, and optical
coherence tomography (OCT). The diversity of imaging protocols increases the amount of con-
textual information available. For example, researchers have used OCT to create a reproducible
measure of the curvature of the eye.1 Contrast agents injected into the vascular system can high-
light abnormal tissues such as lesions and tumors. In MRI, different imaging sequences result in
different relaxation weightings, producing distinct tissue contrasts.

Even in healthy individuals, there is significant variation in orbit and optic nerve morphol-
ogy. Differences in eye morphology have been associated with demographic variables such as
sex and ethnicity.2 Researchers have used CT scans to find associations between orbital skull
landmarks and sex and ethnicity.3,4 A study examining ONSD in 585 healthy adults using ultra-
sonography found that the ONSD ranged from 3.30 to 5.20 mm and eyeball transverse diameter
(ETD) ranged from 20.90 to 25.70 mm.5 Similarly, another study with 300 healthy participants
found that the ONSD diameter ranged from 5.17 mm� 1.34 mm to 3.55 mm� 0.82 mm at
different locations in the intra-orbital space using CT imaging.6 In addition, variation in eye
morphology, particularly in the globe, depends on conditions that affect visual acuity, such
as myopia and hyperopia. Researchers have used MRI to associate myopia with posterior eye
shape.2 A study examining differences in eye shape on MRI in emmetropia and myopia found
that the globe is larger in all dimensions (with the largest changes axially followed by vertically
and then horizontally) as myopic refractive correction increases. Specifically, in myopia, the
globe dimensions ranged from 22.1 to 27.3 mm axially, 21.1 to 25.9 mm vertically, and
20.8 to 26.1 mm horizontally. Even the typical emmetropic eye contains substantial variation
across a population.7,8

The morphology of the eye is also important for understanding pathologies. Tumors such as
optical nerve sheath meningioma can compress the optic nerve, whereas optic nerve glioma can
expand the optic nerve.2 Thyroid eye disease can result in optical rectus muscle enlargement.3

Changes such as these can be quantified using morphological metrics, e.g., the ONSD, which can
be measured after segmenting the optic nerve from the surrounding orbital fat. These variations
highlight the difficulty in creating a standardized reference image that is not biased by known
differences in eye morphology.

Atlases are standardized reference images that are useful for tasks such as image registration
and cross-sectional comparisons. For atlases to be representative of a population, it is important
that they not be biased toward the morphology, contrast levels, or health conditions of any subject
used in their creation. Given the variation across a population, it is challenging to generalize the
population characteristics of both eye morphology and contrast intensity in a single anatomical
reference template to define the conditional characteristics of the organ-specific regions (e.g.,
healthy or diseased). To enhance the generalization of eye organ contexts from different imaging
protocols, we investigate the contextual variability in different tissue contrasts in MRI.
Volumetric scans often have a lower resolution in the through-plane (x-z or coronal plane and
y-z or sagittal plane) than that of the in-plane (x-y or axial plane), where the x-axis is the left/right
axis, the y-axis is the anterior/posterior axis, and the z-axis is the superior/inferior axis (Fig. 1).
The low-resolution characteristics in the through-plane limit context for aligning the eye anato-
mies. Previous works have demonstrated the feasibility of leveraging deep learning super-
resolution algorithms to restore the image quality.9 To be useful for providing spatial context
for low through-plane resolution MRI images of the eye, we need atlases that can appropriately
visualize structures that are difficult to differentiate in low through-plane resolution, such as the
optic nerve. Therefore, we desire to learn isotropic high-resolution information from images that
contain only low-resolution information in the through-plane across several MRI tissue contrasts.
Consequently, we explore two questions:
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(1) Can we further apply a deep super-resolution algorithm to multiple MRI tissue contrasts?
(2) Can we leverage the super-resolution imaging to generate refined unbiased eye atlas

templates?

In this paper, we propose a coarse-to-fine framework to enhance the image resolution and
leverage the restored details to generate a refined unbiased eye atlas specific to several tissue
contrasts. We generate a separate atlas for each tissue contrast, so the atlases are not in spatial
alignment. To represent the variability in eye morphology across a large population, we wish to
incorporate information from as many subjects as possible. However, iterative deformable tem-
plate generation algorithms are computationally expensive for more than a few subjects. To
address this limitation, we choose a coarse-to-fine framework to create a coarse template from
a small set of 25 subjects which we refine using a larger population of 75 subjects with a more
computationally efficient deep learning-based deformable registration algorithm. The complete
backbone consists of three steps: (1) applying a deep super-resolution network to enhance
through-plane resolution quality, (2) generating an efficient coarse unbiased template from a
small population of samples, and (3) refining the template by applying a deep probabilistic net-
work for large population samples. The experimental results show that the application of the
super-resolution network enhances the appearance of the eye organ. With the probabilistic refine-
ment, our method achieves state-of-the-art registration performance when compared with deep
learning registration baselines when there are sufficient subjects for refinement. Our contribu-
tions are summarized here:

(1) We propose a two-stage framework to enhance the through-plane resolution of imaging
across different tissue contrasts and adapt the restored high-resolution context for eye
atlas generation.

(2) We propose a coarse-to-fine registration strategy that combines both metric-based and
deep learning-based registration to perform across large population samples.

(3) We evaluate our generated atlas with inverse eye organ label transfer from atlas space to
moving subject space, demonstrating significant improvements in the Dice score across
all tissue contrasts with sufficient subjects.

(4) All generated atlases as well as the corresponding four eye organ labels will be used
through the Human BioMolecular Atlas Program (HuBMAP).10

Fig. 1 Representative in-plane (axial, first row) and through-plane (coronal, second row and sag-
ittal, third row) slices for four MRI tissue contrast from four different subjects. The coronal and
sagittal through-plane slices are lower resolution than the axial in-plane slices and are visualized
with nearest-neighbor interpolation. The relatively lower resolution limits our ability to distinguish
organs and generalize anatomical characteristics across populations.
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The HuBMAP project highlights the need for standardized coordinate systems for navigat-
ing multiscale histological information in organs of the human body.10 Here, the key contribution
is a deep learning-based framework for generating eye atlases that provide this standardized
coordinate system. We expand on previous work generating eye atlases for computed tomog-
raphy to multi-contrast MRI acquired at low resolutions.11 We contribute a pipeline for creating
eye atlases using super-resolution and a coarse-to-fine framework for atlas generation. Here, we
implement this method using the SMORE super-resolution algorithm along with the ANTs tool-
kit and VoxelMorph for deformable image registration.9,12,13 Current eye atlases are generated
using manual segmentation on rigid-aligned images.14 A key contribution of the eye atlas pro-
posed here is to provide a scaffold on which other information can be attached. For example,
atlases allow for automated segmentation. We can register the template to a moving subject
image and then apply this transformation to the atlas labels to label the moving subject image.
Here, we introduce a pipeline for eye atlas generation and aim to establish a state-of-the-art
method for eye atlases.

2 Related Works

2.1 Atlas Generation
Significant efforts have been dedicated to creating brain atlases, including across multiple
modalities.15 Researchers have created atlases with mouse brains to represent populational
anatomy and variations.16,17 Shi et al. developed an infant brain atlas, applying groupwise regis-
tration to avoid biasing the atlas to a single target.18 There are multiple atlases that attempt to
capture longitudinal information across infants of different ages,19,20 with one using symmetric
diffeomorphic registration to avoid bias.21 While previous efforts primarily focused on creating
healthy brain atlas templates, Rajashekar et al. proposed high-resolution normative atlases for
visualizing population-wise representations of brain diseases, including brain lesion and stroke
using fluid-attenuated inversion recovery (FLAIR) MRI and non-contrast CT modalities.22

Abdominal studies have developed a multi-contrast kidney atlas, incorporating both contrast
and morphological characteristics within kidney organs.23,24 Researchers have extended kidney
atlas templates to encompass substructure organs, such as the medulla, renal cortex, and pelvi-
calyceal systems in kidney regions using arterial phase CT.25 However, limited research has
addressed the creation of a standard reference atlas for the eye, which presents challenges due
to its complex morphology and the influence of conditions that affect the eye shape, e.g., myopia
and hyperopia.

2.2 Medical Image Registration
To accurately transfer the varied anatomical context from the moving subject to the atlas target,
the image registration algorithm must be robust. One straightforward approach to enhancing
registration performance is to adapt both affine and deformable transformations hierarchically
with metric-guided optimization.26–28 Furthermore, spatial optimization approaches attempt to
regularize the deformation field to effectively align the anatomical context (e.g., discrete opti-
mization,29 b-spline deformation,30 Demons,31 and symmetric normalization27). However, the
computational efficiency of these spatial transformations is limited.

Registration algorithms with deep neural networks aim to enhance both computational effi-
ciency and robustness in an unsupervised setting. VoxelMorph is a foundational network that
adapts a large deformation field to align the significant variation across anatomies.28,32

Researchers have also adapted VoxelMorph to produce diffeomorphic deformations, i.e., defor-
mations that are smooth and invertible.32 To differentiate the two networks, we refer to the former
as VoxelMorph-Original and the latter as VoxelMorph-Probabilistic. Zhao et al. crop the organ
regions of interest (ROIs) and recursively register the anatomical context with VoxelMorph-
Original,33 whereas Yang et al. predict a bounding box to first localize the organ ROIs and per-
form registration.34 Although deep learning-based approaches demonstrate their effectiveness to
enhance the computational efficiency of registration algorithms, instability in the registration
performance may arise due to substantial domain shifts with unseen data.24
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3 Methods
Our goal is to improve the through-plane resolution of different MRI tissue contrasts and leverage
the distinct volumetric appearance in eye organs to generate tissue contrast-specific atlases across
populations (Fig. 2). Our proposed framework can be divided into three sections: (1) super-
resolution preprocessing, (2) coarse unbiased template generation, and (3) hierarchical deep
probabilistic registration refinement.

3.1 Super-Resolution Preprocessing
We applied the synthetic multi-orientation resolution enhancement (SMORE) algorithm to gen-
erate super-resolution images.9,35 We select SMORE as the super-resolution algorithm because it
is self-supervised and does not require external training data. Other self-supervised super-
resolution algorithms require orthogonal views of the same image across multiple contrasts36

or train on a batch of images instead of each image independently.37

The input image for SMORE is an anisotropic volume, modeled with a spatial resolution of
l × l × h, where l and h have units of mm and h > l. Here, the images have a high ratio between
the in-plane resolution and through-plane resolution (h∕l > 6). SMORE learns a correspondence
between low-resolution (LR) and high-resolution (HR) image patches using only the in-plane
slices as training data. The output of SMORE is an isotropic HR image with resolution l × l × l.

3.2 Coarse Unbiased Template Generation
Given the enriched context from the super-resolution algorithm in the prior step, we can now use
the super-resolution images to create a generalized eye organ representation as a population-wise
atlas template. Typically, we perform image registration to align and match the eye anatomy with
imaging tools, e.g., ANTs and NiftyReg.38,39 However, registration to a single target image with
these tools is biased to a single-fixed reference template.

To tackle this bias, we apply an unbiased template generation method that results in a coarse,
generalized template despite the significant variance in eye morphology. Specifically, for each
tissue contrast, we randomly sampled a small set of 25 subjects and generated an average map-
ping to coarsely align the skull region. The initial template is an average mapping of the
25 subjects, meaning it is unbiased to any of the subjects.13,40 We performed hierarchical
metric-based registration (consisting of rigid, affine, and then deformable registration) with
ANTs to iteratively compute an average mapping in a separate spatial alignment for each tissue
contrast. The computed average template in each epoch was the fixed template for the next

Fig. 2 Complete pipeline for unbiased eye atlas generation consists of two stages: (1) performing
a deep learning super-resolution algorithm to enhance image quality and distinguish organ appear-
ances and (2) combining metric-based and deep learning-based registration through a hierarchical
registration framework for refined anatomical transfer.
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epoch. We performed the same hierarchical procedure iteratively until the registration loss con-
verged. We leveraged a small population sample to generate a coarse unbiased template due to
the required time for loss convergence, which was 3 days for 20 samples and 3.5 weeks for 100
samples using an Intel Xeon W-2255 CPU. A previous study performed ANT template gener-
ation on brain MRI using affine and deformable registration and found that two samples of 20
subjects each resulted in atlas templates with similar Jaccard scores for the whole brain and
cortical regions, suggesting that this sample size is enough to average the variability across sub-
jects for an initial template.13 We hypothesize that the iterative-generated template can provide
the representational anatomy of eye organs with minimal bias.

3.3 Hierarchical Deep Probabilistic Registration Refinement
We refined the template using the remaining randomly selected samples in addition to the 25 used
for the coarse template generation. Our goal is to generalize the anatomical characteristics of eye
organs across a large population. We used the VoxelMorph-Probabilistic model to refine the
coarse atlas templates.32 The deep probabilistic network predicts the deformation field modeled
as a diffeomorphic transformation, meaning the transformation is smooth and invertible. In addi-
tion, the model is unsupervised and does not require labels. In addition to the probabilistic model,
we also compared it with the non-probabilistic VoxelMorph-Original.12 After refinement, the
resulting atlases serve as reference images in separate spatial alignments for each tissue contrast.
After forming the atlas template, we generate labels using majority voting.

4 Experimental Setup
To evaluate our proposed unbiased atlas generation framework, we performed experiments to
determine the quality of our super-resolution preprocessing and image registration pipeline.
We tested our framework using inverse label transfer with four MRI tissue contrasts. We applied
the inverse transformation using the deformation field of the atlas label and compared it with the
original label for each subject. The choice of metrics and therefore performance for image analy-
sis is highly application-specific.41 Here, we choose to use the Dice score to compare the inverse
labels from the atlas registered to the subject with the original subject labels. We also calculated
the Hausdorff distance both with and without super-resolution for each contrast to quantify the
performance of distance-based metrics used to describe eye morphology.

4.1 Datasets
We retrieved de-identified volumetric scans in four different MRI tissue contrasts from 1842
patients from ImageVU, a medical image repository from Vanderbilt University Medical
Center. We obtained approval from the Institutional Review Board (IRB 131461), and informed
consent was waived due to the use of de-identified data. The tissue contrasts were T1-weighted
pre-contrast, T1-weighted post-contrast, T2-weighted turbo-spin echo (TSE), and T2-weighted
fluid-attenuated inversion recovery (FLAIR). The ratio between the through-plane and in-plane
resolution varied with a large level of range (Table 1). Across all four tissue contrasts studied
here, the x-y resolution varied from 0.457 to 0.635 mm, and the slice thickness varied from 1.23
to 7.00 mm. The large values for slice thickness limit our ability to distinguish spatial

Table 1 Overview of four multi-contrast MRI dataset samples.

Tissue contrast T1W pre-contrast T1W post-contrast T2W TSE T2W FLAIR

Anatomical regions Optic nerve, recti muscles, globe, orbital fat

Sample size 44 100 100 100

In-plane resolution (min-max, mm) 0.430 to 0.938 0.375 to 0.938 0.391 to 0.898 0.393 to 0.898

Slice thickness (min-max, mm)a 6.00 4.00 to 6.00 6.00 4.00 to 6.00

aThis study used fully de-identified data. Information on the slice-selection profiles and the use of slice gaps
were removed in the de-identification process.
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information. We randomly selected 100 subjects from each tissue contrast to both generate and
evaluate the unbiased template, performing quality assurance to make sure the morphological
conditions of the eyes are similar (e.g., healthy, no implant artifacts). For T1-weighted pre-
contrast, there were only 44 total subjects. The subjects that we sampled for each imaging tissue
contrast were different, resulting in different spatial alignments for each tissue contrast. All
selected subject scans consisted of four organ ground truth labels: (1) optic nerve, (2) recti
muscles, (3) globe, and (4) orbital fat.

4.2 Implementation Setup

4.2.1 Super-resolution preprocessing

We apply the SMORE super-resolution algorithm to generated upsampled MRIs. After applying
SMORE, we resampled the isotropic resolution to 0.8 mm × 0.8 mm × 0.8 mm using cubic
interpolation. We further cropped and padded the MRI volumes to 256 × 256 × 224 voxels.

4.2.2 Coarse unbiased template generation

To generate the coarse unbiased template, we performed a conventional metric-based registration
algorithm with the ANT toolkit. We leveraged the multivariate template construction tool, which
generates an average template that is not biased toward a single subject. We applied both rigid
and affine registration to align the anatomical locations of the head skull and eye organs,
followed by SyN registration, which is a deformable registration algorithm with the similarity
metric of cross-correlation. We chose four resolution levels (6, 4, 2, and 1) and iterated over each
level for 100, 100, 70, and 20 iterations, respectively. We performed this registration process for
six epochs and selected the generated template for each tissue contrast after the registration losses
converged.

4.2.3 Hierarchical registration refinement

We used the remaining samples to refine the coarse template and generate a refined atlas tem-
plate. As VoxelMorph-Original and VoxelMorph-Probabilistic assume the images only have non-
linear spatial misalignment, we used the same hyperparameters in the template generation step to
perform metric-based affine registration for the remaining samples as an initial registration align-
ment. Both the resolution and volumetric dimension of the MRI scans remained the same in the
template generation stage (resolution: 0.8 mm × 0.8 mm × 0.8 mm, dimension: 256 × 256 ×
224 voxels). We then trained the deep probabilistic framework available from VoxelMorph-
Probabilistic and the non-probabilistic VoxelMorph-Original model for comparison. Due to hard-
ware limitations, the batch size was 1. We used the Adam optimizer42 with a learning rate of 10−4.
Here, we chose to use the default hyperparameters for VoxelMorph and found the registration to
be qualitatively satisfactory using a checkerboard visualization. A discussion of the impact of
different hyperparameters can be found in studies by Balakrishnan et al.12 and Dalca et al.32 For
VoxelMorph, we used the original loss functions. For VoxelMorph-Original, we used normalized
cross-correlation loss with a regularization term to encourage smooth displacement fields. For
VoxelMorph-Probabilistic, we use KL divergence loss with normalized cross-correlation recon-
struction loss. After the deep probabilistic refinement, we have a separate unbiased atlas for each
tissue contrast.

5 Results and Discussion

5.1 Qualitative Comparison with and without Super-Resolution Preprocessing
The super-resolution preprocessing enhanced the through-plane resolution images for each tissue
contrast, with more distinctive appearances in eye organs (Fig. 3). The boundaries across tissues
and anatomies are substantially clearer. This increase in image quality also demonstrates the
distinctive variability of the eye organs across the population.
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5.2 Registration Comparisons Across Multiple Contrast Images
After we performed super-resolution preprocessing on all imaging cohorts, we performed hier-
archical registration to align the anatomy from moving imaging samples to the unbiased atlas
template. We applied ANTs as the first stage with a metric-based registration algorithm to create
a baseline result across the four different tissue contrasts.

We performed the second stage registration using VoxelMorph-Original and VoxelMorph-
Probabilistic (Table 2). We observed a statistically significant improvement in the Dice score
across the four tissue contrasts using the Wilcoxon signed-rank test for all contrasts except
T1-weighted pre-contrast, which had fewer subjects for refining the atlas. With the deep prob-
abilistic model as the second stage, the label transfer performance significantly improved. The
registration was consistent across the variable subjects (Fig. 4).

We observe that the unclear boundaries in the atlases brought by the low resolution in the
through-plane axis are minimized by applying SMORE (Fig. 5). The average Hausdorff distan-
ces for the inverse label transfer are ∼6 mm, which is one voxel’s thickness along the axial
direction in the subject space. There is not a consistently significant difference in Hausdorff
distance when performing super-resolution (Table 3). The mapping more clearly shows the
anatomy of the eye organs and generalized population characteristics, with limited deformation
in the eye organ region. A comparison of the inverse labels registered from the atlas to moving
subject space shows that the labels appear consistent with the original segmentation
labels (Fig. 6).

5.3 Discussion
We presented a complete framework to adapt a large population of multi-contrast imaging for
unbiased eye atlas generation. We integrated both metric-based and deep learning-based regis-
tration as a coarse-to-fine framework to refine the transfer process of eye organ anatomy across
populations. By applying SMORE as the first step in the framework, the SMORE model learned
the high-resolution context from the in-plane axial slice and applied the correspondence to
restore the refined details for the through-plane coronal and sagittal slices. With the restored
high-resolution details, the templates demonstrate a substantial qualitative enhancement in organ
appearance and boundaries. However, there was not a consistently significant increase in
Hausdorff distance using SMORE. This could be because the inverse label transfer involves
registering a low-resolution subject image to the templates, limiting the spatial context available
for registering the images regardless of the method used to generate the fixed template. With the
rigid, affine, and deformable registration from ANTs, moving subject scans demonstrate coarse
alignment with respect to the eye organs. The initial template is an average mapping that is not
biased to a single subject, and each tissue contrast has a separate geometry. We further refined the
intermediate registered output with a deep learning-based approach to generate a larger defor-
mation field for anatomy alignment. Moreover, we integrated probabilistic neural networks to
smooth the generated deformation field and to adapt diffeomorphism for registration, which
enhanced the anatomical context transfer performance across all tissue contrasts with sufficient
subjects.

Fig. 3 By applying SMORE (bottom rows), the anatomical context of the eye region is distinctly
shown in the coronal view with a clear improvement in resolution across five unpaired patients in
each tissue contrast compared with images without SMORE applied (top rows).
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Because the coarse template generation relies on an average mapping across 25 subjects, the
atlases generated here are unbiased to a particular subject. This unbiased mapping addresses the
limited information generalizable to a population from single subject atlases such as the
Talairach-Tournoux human brain atlas.43 There are several potential uses for these eye atlases.
The main use is for the HuBMAP project, for localizing multi-scale information in the eye.10 In
medical research, they could be used to quantitatively measure eye shape across a variable pop-
ulation, similar to how brain atlases can allow for a standardized reference to quantify the volume
of brain structures or size of small lesions. Atlases also allow for automatic labeling of structures
of interest, providing confidence in images with poor quality.44 Due to the application of the
super-resolution algorithm, the eye atlases restore high-resolution details that are not available
in scans with a large slice thickness, meaning they provide a high-resolution reference for images
with poor through-plane quality. The atlas generation pipeline also does not rely on any specific
MRI tissue contrast, allowing for a consistent method for generating atlases across a broad range
of tissue contrasts.

Although the generated unbiased templates for each tissue contrast demonstrate the distinc-
tive appearance of the eye organs across the population, multiple bottlenecks and limitations exist
in the proposed framework. The first bottleneck is to generate a coarse unbiased template with

Fig. 4 The atlas is generalizable across the variation in subjects, demonstrated by consistent
registration for several subjects. The checkerboard shows the inverse deformation from atlas
labels to moving subject labels for several subjects from the T2-weighted FLAIR tissue contrast.
The arrows track a single square across subjects.

Fig. 5 When using SMORE to generate an unbiased eye atlas, the anatomical context from eye
organs to the brain is refined, and tissues are clearly distinguishable compared to the unbiased eye
atlas without using SMORE. The eye organ region (yellow bounding box) shows little deformation.
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ANTs. We only leveraged a small portion (25 subjects) of the imaging cohort to generate the
initial average template. The main limitation of applying ANTs is the low computational effi-
ciency, taking several days to generate a coarse template with only a small portion of samples,
which can be a bottleneck without access to computing cluster resources. Therefore, an end-to-
end approach to generate a coarse unbiased template is desirable. Another computational
constraint is the hierarchical registration framework. Before applying deep learning-based regis-
tration algorithms such as VoxelMorph-Original and VoxelMorph-Probabilistic, all imaging sam-
ples must be affine registered. However, limited studies have proposed adapting a deep learning
network that can perform affine and deformable registration in parallel to avoid this sequential
processing. Researchers have introduced multi-task networks combining affine and deformable
registration to enhance the effectiveness and the computational efficiency of registration algo-
rithms, but these networks have not shown substantial improvement over VoxelMorph-Original

Table 3 Quantitative evaluation of inverse label transfer with and without super-resolution using
Hausdorff distance (HD).

Tissue contrast
Super-

resolution?
Optic nerve
HD (mm)

Recti muscles
HD (mm)

Globe HD
(mm)

Orbital fat
HD (mm)

Average
HD (mm)

T1W pre-contrast No 4.70 ± 2.14 5.68 ± 1.87 3.69 ± 2.06 4.34 ± 1.97 4.60 ± 2.12

Yes 4.85 ± 2.16 5.66 ± 1.58 4.71 ± 2.38 4.07 ± 1.61 4.82 ± 2.03

T1W post-contrast No 5.99 ± 4.52 6.51 ± 5.23* 4.16 ± 6.25* 4.53 ± 5.39* 5.29 ± 5.45*

Yes 6.61 ± 4.63 7.41 ± 5.50 6.20 ± 6.48 5.73 ± 5.73 6.48 ± 5.63

T2W TSE No 7.39 ± 4.90 5.99 ± 1.49 5.29 ± 2.08 4.15 ± 1.76 5.70 ± 3.12

Yes 7.09 ± 5.31 6.38 ± 3.52 4.98 ± 4.46* 4.67 ± 3.87 5.78 ± 4.44

T2W FLAIR No 7.38 ± 11.53 8.09 ± 12.59 6.21 ± 14.46 6.85 ± 13.06 7.13 ± 12.92

Yes 7.04 ± 11.76 7.35 ± 12.8 5.68 ± 14.67 5.33 ± 13.40* 6.35 ± 13.18*

*p < 0.001 using the Wilcoxon signed-rank test.
Note: bold values indicate lowest Hausdorff distance for each label and contrast.

Fig. 6 Inverse labels registered from the final atlas space to the moving subject space appear
qualitatively similar to the original segmentation labels. Here, we show several examples across
the 20th, 50th, and 80th percentile of average Dice score across labels for the T2-weighted FLAIR
tissue contrast.

Lee et al.: Super-resolution multi-contrast unbiased eye atlases with deep. . .

Journal of Medical Imaging 064004-11 Nov∕Dec 2024 • Vol. 11(6)



without the use of additional registration algorithms such as Demons.45 Another limitation of this
framework is that the resulting atlases are not in registration, meaning we have a separate spatial
geometry for each tissue contrast. Note that these computational limitations discussed here apply
during the atlas construction. Because the atlases will be deployed offline outside of a clinical
setting, computational concerns are secondary.

The framework presented here allows for the creation of a reference coordinate system for
the eye. The eye atlases presented here provide a standardized coordinate system for histological
information of the eye for use in the HuBMAP project.10 The atlases allow for colocalization and
navigation of multiscale information in the eye. Beyond this use, the eye atlases may also serve as
a standardized spatial reference for the eye, serving as a means for exploring quantitative geo-
metric measurements of eye morphology despite systematic differences within a population.

6 Conclusion
In summary, we introduced a framework to generate unbiased eye atlases across a large pop-
ulation using images with anisotropic voxels. We applied a deep learning super-resolution algo-
rithm to learn the high-resolution characteristics from axial slices and applied this high-resolution
correspondence to the coronal and sagittal slices. We adapted the restored high-resolution context
to generate an unbiased eye atlas with a separate spatial geometry for each tissue contrast, using
hierarchical registration with an average mapping to avoid biasing the atlas by registering to a
single target. We integrated a deep probabilistic network to enhance the smoothness of the defor-
mation field and increase registration performance with diffeomorphism. With sufficient subjects
for refining the atlas, the generated average template from each tissue contrast illustrates the
distinctive appearance of eye organs and generalizes across a large population cohort with sig-
nificant improvement in anatomical label transfer performance compared with metric-based
registration alone.
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16. N. Kovačević et al., “A three-dimensional MRI Atlas of the mouse brain with estimates of the average and
variability,” Cereb. Cortex 15(5), 639–645 (2005).

17. Q. Wang et al., “The Allen mouse brain common coordinate framework: a 3D reference atlas,” Cell 181(4),
936–953.e20 (2020).

18. F. Shi et al., “Infant brain atlases from neonates to 1- and 2-year-olds,” PLoS One 6(4), e18746 (2011).
19. Y. Zhang et al., “Consistent spatial-temporal longitudinal atlas construction for developing infant brains,”

IEEE Trans. Med. Imaging 35(12), 2568–2577 (2016).
20. M. Kuklisova-Murgasova et al., “A dynamic 4D probabilistic atlas of the developing brain,” Neuroimage

54(4), 2750–2763 (2011).
21. A. Gholipour et al., “A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and

analysis of early brain growth,” Sci. Rep. 7(1), 476 (2017).
22. D. Rajashekar et al., “High-resolution T2-FLAIR and non-contrast CT brain atlas of the elderly,” Sci. Data

7(1), 56 (2020).
23. H. H. Lee et al., “Construction of a multi-phase contrast computed tomography kidney atlas,” Proc. SPIE

11596, 115961T (2021).
24. H. H. Lee et al., “Multi-contrast computed tomography healthy kidney atlas,” Comput. Biol. Med. 146,

105555 (2022).
25. H. H. Lee et al., “Supervised deep generation of high-resolution arterial phase computed tomography kidney

substructure atlas,” Proc. SPIE 12032, 120322S (2022).
26. J. Ashburner, “A fast diffeomorphic image registration algorithm,” Neuroimage 38(1), 95–113 (2007).
27. B. B. Avants et al., “Symmetric diffeomorphic image registration with cross-correlation: Evaluating

automated labeling of elderly and neurodegenerative brain,” Med. Image Anal. 12(1), 26–41 (2008).
28. G. Balakrishnan et al., “An unsupervised learning model for deformable medical image registration,” in

IEEE/CVF Conf. Comput. Vision and Pattern Recognit., IEEE, pp. 9252–9260 (2018).

Lee et al.: Super-resolution multi-contrast unbiased eye atlases with deep. . .

Journal of Medical Imaging 064004-13 Nov∕Dec 2024 • Vol. 11(6)

https://doi.org/10.1364/BOE.428430
https://doi.org/10.1136/bjophthalmol-2019-315020
https://doi.org/10.1136/bjophthalmol-2019-315020
https://doi.org/10.1097/SCS.0000000000007014
https://doi.org/10.1097/00001665-199807000-00011
https://doi.org/10.1038/s41598-017-16173-z
https://doi.org/10.3980/j.issn.2222-3959.2015.06.30
https://doi.org/10.1167/iovs.04-0292
https://doi.org/10.1155/2014/503645
https://doi.org/10.1109/TMI.2020.3037187
https://doi.org/10.1038/s41556-023-01194-w
https://doi.org/10.1038/s41556-023-01194-w
https://doi.org/10.1117/12.2653753
https://doi.org/10.1109/TMI.2019.2897538
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1016/j.radonc.2021.05.013
https://doi.org/10.1016/j.media.2005.03.002
https://doi.org/10.1093/cercor/bhh165
https://doi.org/10.1016/j.cell.2020.04.007
https://doi.org/10.1371/journal.pone.0018746
https://doi.org/10.1109/TMI.2016.2587628
https://doi.org/10.1016/j.neuroimage.2010.10.019
https://doi.org/10.1038/s41598-017-00525-w
https://doi.org/10.1038/s41597-020-0379-9
https://doi.org/10.1117/12.2580561
https://doi.org/10.1016/j.compbiomed.2022.105555
https://doi.org/10.1117/12.2608290
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1109/CVPR.2018.00964


29. A. V. Dalca et al., “Patch-based discrete registration of clinical brain images,” Patch Based Tech. Med.
Imaging 9993, 60–67 (2016).

30. D. Rueckert et al., “Nonrigid registration using free-form deformations: application to breast MR images,”
IEEE Trans. Med. Imaging 18(8), 712–721 (1999).

31. T. Vercauteren et al., “Diffeomorphic demons: efficient non-parametric image registration,” Neuroimage
45(1), S61–S72 (2009).

32. A. V. Dalca et al., “Unsupervised learning of probabilistic diffeomorphic registration for images and
surfaces,” Med. Image Anal. 57, 226–236 (2019).

33. S. Zhao et al., “Recursive cascaded networks for unsupervised medical image registration,” in IEEE/CVF Int.
Conf. Comput. Vision (ICCV), IEEE, pp. 10599–10609 (2019).

34. S. di Yang et al., “Target organ non-rigid registration on abdominal CT images via deep-learning based
detection,” Biomed. Signal Process. Control 70, 102976 (2021).

35. S. W. Remedios et al., “Self-supervised super-resolution for anisotropic MR images with and without slice
gap,” Lect. Notes Comput. Sci. 14288, 118–128 (2023).

36. J. McGinnis et al., “Single-subject multi-contrast MRI super-resolution via implicit neural representations,”
Lect. Notes Comput. Sci. 14277, 173–183 (2023).

37. H. Zhang et al., “Self-supervised arbitrary scale super-resolution framework for anisotropic MRI,” in IEEE
20th Int. Symp. Biomed. Imaging (ISBI), p. 10230678 (2023).

38. B. B. Avants et al., “The Insight ToolKit image registration framework,” Front. Neuroinf. 8, 44 (2014).
39. M. Modat et al., “Global image registration using a symmetric block-matching approach,” J. Med. Imaging

1(2), 024003 (2014).
40. B. B. Avants et al., “The optimal template effect in hippocampus studies of diseased populations,”

Neuroimage 49(3), 2457 (2010).
41. L. Maier-Hein et al., “Metrics reloaded: recommendations for image analysis validation,” Nat. Methods

21(2), 195–212 (2024).
42. D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,” in 3rd Int. Conf. Learn. Represent.

(2014).
43. D. A. Dickie et al., “Whole brain magnetic resonance image atlases: a systematic review of existing atlases

and caveats for use in population imaging,” Front. Neuroinf. 11, 1 (2017).
44. W. L. Nowinski, “Usefulness of brain atlases in neuroradiology: current status and future potential,”

Neuroradiol. J. 29(4), 260 (2016).
45. X. Gao et al., “DeepASDM: a deep learning framework for affine and deformable image registration

incorporating a statistical deformation model,” in IEEE EMBS Int. Conf. Biomed. and Health Inf. (BHI),
p. 9508553 (2021).

Ho Hin Lee earned his PhD in computer science from Vanderbilt University in 2023, as well as
his MS degree in biomedical engineering from Columbia University in 2019 and his BE degree
in biomedical engineering from the Chinese University of Hong Kong in 2013. His interests
include machine learning, medical image analysis, and biomedical representation learning.

Adam M. Saunders is a PhD student in electrical and computer engineering at Vanderbilt
University. He earned a BEE degree from the University of Dayton in 2023. His current research
interests include deep learning applications in medical imaging and quantitative imaging
methods for MRI.

Biographies of the other authors are not available.

Lee et al.: Super-resolution multi-contrast unbiased eye atlases with deep. . .

Journal of Medical Imaging 064004-14 Nov∕Dec 2024 • Vol. 11(6)

https://doi.org/10.1007/978-3-319-47118-1_8
https://doi.org/10.1007/978-3-319-47118-1_8
https://doi.org/10.1109/42.796284
https://doi.org/10.1016/j.neuroimage.2008.10.040
https://doi.org/10.1016/j.media.2019.07.006
https://doi.org/10.1109/ICCV.2019.01070
https://doi.org/10.1109/ICCV.2019.01070
https://doi.org/10.1016/j.bspc.2021.102976
https://doi.org/10.1007/978-3-031-44689-4_12
https://doi.org/10.1007/978-3-031-43993-3_17
https://doi.org/10.1109/ISBI53787.2023.10230678
https://doi.org/10.1109/ISBI53787.2023.10230678
https://doi.org/10.3389/fninf.2014.00044
https://doi.org/10.1117/1.JMI.1.2.024003
https://doi.org/10.1016/j.neuroimage.2009.09.062
https://doi.org/10.1038/s41592-023-02151-z
https://doi.org/10.3389/fninf.2017.00001
https://doi.org/10.1177/1971400916648338
https://doi.org/10.1109/BHI50953.2021.9508553

