
Engineering the light coupling between metalens
and photonic crystal resonators for robust on-chip

microsystems

Yahui Xiao , Zi Wang, Feifan Wang, Hwaseob Lee , Thomas Kananen,
and Tingyi Gu *

University of Delaware, Department of Electrical and Computer Engineering, Newark,
Delaware, United States

Abstract. We designed an on-chip transformative optic system with a broadband metalens
coupler on a foundry compatible silicon photonic platform. By adjusting the on-chip metalens’
focusing length and mode dimension, the insertion loss between the metalens and the photonic
crystal waveguide (PhC WG) structures is reduced to 2 dB by matching the mode on the metal-
ens focal plane to the PhC WG mode. Alternatively, the integrated metalens allow for direct
coupling from a multi-mode WG to the PhC cavity. The on-resonance transmission in a lens–
cavity–lens microsystem achieves 60%. These micro-systems do not involve any single-mode
silicon nanowire WG, and even a suspended PhC structure can be mechanically robust against
vibrations. The proposed microsystem can be a new platform for miniaturized chemical and
biosensor applications operating in air or solution environments. © The Authors. Published by
SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JOM.1.2.024001]

Keywords: photonic crystals; metalens; mode matching; integrated optics.

Paper 20014 received Sep. 28, 2020; accepted for publication Jan. 13, 2021; published online
Mar. 9, 2021.

1 Introduction

The highest quality factor (Q) versus modal volume (V) ratio of the photonic crystal (PhC) cavity
maximizes the light–matter interactions toward nonlinear optics, quantum optics, and sensing
applications.1–8 In conventional PhC circuits, the light is fed through a low-loss channel wave-
guide (WG) and a PhC WG for coupling into a PhC cavity.9,10 The implementation of such a
system has a few practical challenges: (1) channel WG is usually fragile and easy to break during
the undercut process, which significantly reduces yield during the postprocessing procedures11

and makes such a system less practical for any sensing applications; (2) the interface geometry
between the channel WG and PhC WG needs to be carefully engineered to minimize the
insertion loss;12–16 (3) as a line defect in PhC triangular lattice, the WG geometry needs to
be engineered to ensure the overlap between the high-transmission band and PhC resonance
wavelength. Here, we propose a channel WG-free on-chip micro-system composed of a broad-
band dielectric metalens and a PhC resonator structure. The critical dimension of such a geom-
etry is more than 100 nm and is compatible with foundry processing.17,18 The microsystem’s
mechanical robustness and foundry compatibility promise its applications in ultrafast low-power
modulators, hybrid lasers, and miniaturized biosensors.

In this work, we compare two channel WG-free designs with and without a PhC WG.
The direct coupling between a broadband metalens and PhC L3 cavity can lead to a 0.68
on-resonance transmission and a quality factor of 6100, compared with the metalens–PhC
WG side-coupled L3 cavity structure with the transmission of 0.66 and quality factor of 6600.
The corresponding extinction ratios are 84 and 39 dB, respectively.
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2 Metalens–PhC WG with Side-Coupled L3 Cavity System

This section focuses on optimizing the design of the metalens (e.g., focal length and spot
size19,20) and the PhC WG interface geometry to maximize the coupling efficiency. The interface
of the PhC structure is designed by removing etched air holes to generate a PhC coupler with
38 deg, 60 deg, 120 deg, and 180 deg (without removing air holes), respectively. Via sweeping
the distance between the metalens and the PhC WG, the optimized position of the PhC structure
can be computed from the 2.5D variational finite difference in time domain simulations.

2.1 Design Principle of Low-Loss On-Chip Metalens

Both the metalens and the PhC are defined on the same device layer on the silicon-on-insulator
substrate. The metalens is used as a compact low-loss mode converter.21 Here, we use a gradient-
varying high-contrast transmit array metalens for wavefront control. The 1D metalens along the
y-direction imposes a space-dependent phase shift on the TE polarized impinging light along the
x-direction. Here, TE polarization is defined as the main E filed component in the y-direction,
as shown in Fig. 1(b). The input light centered at the wavelength of 1.55 μm propagates along
the þx direction.

The designed metalens is 10 μmwide in the y-direction, with a focusing length of 13 μm and
a spot size of 0.65 μm, as shown in Fig. 1(a), and the optical intensity distribution of focusing
points at the x–y plane in the 250-nm-thick silicon slab center. The spot size is marked as the full-
width half-maximum (FWHM) in the cross-section of the mode profile in Fig. 1(c). As the focus-
ing length increases from 4.6 to 25 μm, the focusing efficiency increases from 29% to 78%, as
shown in Fig. 1(d). The focusing efficiency is defined as the fraction of the input light that passes
through a rectangular aperture at the focal plane, with its width equaling three times the spot size
and its height being 0.5 μm. The dashed line in Fig. 1(d) is the FWHM of the electric field
intensity distribution in the PhC WG as a standard line for mode matching between the metalens

Fig. 1 Mode matching between the integrated metalens and PhC WG. (a) In-plane (x -y ) photon
intensity of an integrated metalens. The distance between themetalens focal plane and a PhCWG
coupler is L. (b) Detailed electric field Ey as the light passing through the metalens [the dashed
box in (a)]. (c) The cross-sectional model profile on the focal plane, with the spot size marked
as FWHM. (d) Focusing efficiency (blue line) and FWHM (orange line) of the metalens on the
focal plane versus focusing length, compared with the mode width of the W1 PhC WG (orange
dash line).
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and PhC structure. The light with mode profile matching propagates smoothly from the focused
Gaussian beam into the periodic PhC structure.22–24

2.2 PhC WG Coupler

The structure of W1 PhC WG (relying on a single line-defect in a hexagonal lattice) consists of
air holes with a lattice constant a ¼ 0.42 μm etched into a silicon slab. The slab thickness is
d ¼ 0.6a and the air hole radius is r ¼ 0.36a, with the end holes shifted by s ¼ 0.15a in a side-
coupled L3 cavity, as shown in Fig. 1(a). The displaced end holes are primarily to increase the
cavity volume for high-index-material (Si) to accumulate more photons, wherein the Bragg
reflection and out-of-plane provide the confinement in-plane by total internal reflection.
The width of the output channel WG is designed as w ¼ ffiffiffi

3
p

a to ensure a high and stable trans-
mission through the PhC WG. The channel WG position is swept to optimize the coupling
efficiency between the PhC WG and channel WG. For a single-mode channel WG, the spatial
mode profile is independent of the position along the WG direction. However, the spatial mode
profile in the PhC WG is changed by the periodic geometry along with the WG. In such a case,
the coupling efficiency may change when the PhC WG ends with a different position within its
period.25

Via integrating with metalens ðf ¼ 13 μmÞ, the input light centered at the wavelength of
1.55 μm is focused on a spot size similar to the PhC WG mode, which allows for low insertion
loss at the interface. Here, we designed four different PhC couplers with angles of 38 deg, 60 deg,
120 deg, and 180 deg by removing individual air holes at the front edge of the PhC WG to
generate an input PhC taper.26,27 Figure 2(a) shows the optimized geometric structure and mode
profile at the highest transmission region of PhC WG. The in-plane spot size of the given metal-
ens is 0.65 μm, which is smaller than the PhC coupler size (1.88 μm) at the coupling plane.

Figures 2(c) and 2(d) show the comparison of three different PhC coupler angles for the total
Q-factor and enhancement factor of the side coupled L3 cavity. The total Q-factor of a resonator
is solely limited by out-of-plane radiation that gives a direct measure of the cavity resonance

lifetime, which can be re-expressed as Qtot ¼ λ0
Δλ, where λ0 is the resonant wavelength and Δλ is

the FWHM of the resonance. The enhancement factor implies the electric field intensity in the
cavity at resonance.

Fig. 2 Metalens–PhC WG coupler. (a) The geometry of PhC WG coupler with taper angles of
38 deg, (b) 60 deg, (c) 120 deg, and (d) 180 deg. (e) Broadband transmission spectra of a
metalens–PhC structure in Fig. 1(a), with taper angles in (a)–(d). (f) Detailed comparison of high
transmission region. The solid curves are simulation data, and dashed lines are an average value.
The ripples are from the FP resonance between the metalens and PhC WG interface. (g) Optical
intensity enhancement factor in the L3 PhC cavity side-coupled to the WG compared with the one
input to the metalens at different L.
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By sweeping the distance between the metalens and PhC WG (coupler angle of 60 deg) with
a step size of 0.5a, the system enhancement factor shows an optimized distance between the
metalens and PhC WG of f þ L, where L ¼ 2a. However, the PhC WG transmission is not
quite sensitive to the changing distance based on sweeping results.

Figure 2(e) shows the transmission of four different PhCWG coupler angles in log scale with
resonance dips, where the side-coupled L3 cavities are excited by evanescent coupling from a
nearby PhC WG.28 The band edge of the PhC WGs with the angles of 38 deg, 60 deg, and
120 deg is around 1.57 μm. However, both the resonance dip and the band edge of these three
coupler angles shift to a slightly shorter wavelength, compared with the 180 deg coupler angle
(without removing air holes). This phenomenon indicates that changing the PhC WG structure
by removing air holes will shift the band edge to a shorter wavelength. Figure 2(f) shows a
zoomed transmission part from Fig. 2(e) in linear scale, where the coupler angles of 38 deg
and 60 deg have the relatively highest transmission, whereas the one of 60 deg is slightly higher
and more stable. Dashed lines are the average transmission value in the same color as the cor-
responding solid lines. The high transmission comparison shows that the coupler with smaller
angles can collect more light and decrease the back reflection by mode matching. Figure 2(g)
represents the PhC WG position sweeping results in terms of the system enhancement factor

(¼ Icavity
Iinput

) with the coupler angles of 38 deg, 60 deg, and 120 deg, respectively. Coupler angles

of 60 deg and 120 deg show a similar trend and reach the optimized PhC WG position with
L ¼ 2a, marked by a vertical grey dashed line in Fig. 2(g).

3 Metalens–PhC L3 Cavity System

Ln cavities represent line defects along the Γ–K direction, whereby n adjacent holes are removed
from the periodic lattice to localize light along a line. The PhC L3 cavity is the most common
configuration line-defect cavity (with three missing holes), with the end holes shifted by 0.15a to
obtain a high-Q factor,29 as shown in Figs. 3(a) and 3(f). Thus, light is considered to penetrate
more inside the mirror and to be reflected perfectly, which means that the cavity edge’s electric
field profile becomes gentler. Here, we designed a PhC L3 cavity with the same parameters
(a ¼ 0.42 μm, r ¼ 0.36a, and s ¼ 0.15a) as the ones of the PhC WG in Sec. 2. Similar to the
metalens–PhC WG system, we also compared the PhC L3 cavity with the coupler angles of
38 deg, 60 deg, and 120 deg by integrating with the same metalens ðf ¼ 13 μmÞ. The y-direction
width of the PhC L3 cavity is designed as the same size of the metalens to increase the coupling
region and extend the Bragg reflection in x–y direction.30

Fig. 3 Direct metalens–PhC L3 cavity coupler. (a) Device geometry of the metalens and PhC L3
cavity. The distance between the metalens and the center of the PhC L3 cavity is f þ L. (b), (c),
and (d) are the sweeping total Q factor, sweeping peak transmission, and sweeping system
enhancement factor of the device in (a). (e) Peak transmission comparison spectra of the device
in (a) and (f) at an optimized distance, with the PhC L3 cavity coupler angle of 60 deg.
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3.1 Optimize the Metalens–PhC Cavity Coupler

Direct coupling between the metalens and PhC cavity results in a more compact and efficient
microsystem [Fig. 3(a)]. The TE polarized light centered at 1.55 μm converges through the met-
alens and impinges on the PhC L3 cavity to excite a fundamental resonant mode31,32 at a specific
wavelength by the tunneling wave. The simulated result for the total Q-factor in Fig. 3(b) shows
stable but periodic oscillations, which confirms that, during scanning Fabry–Pérot (FP) resonator
length, the Airy distribution originates in the sum of mode profiles of the longitudinal resonator
modes.33 Based on the sweeping results in terms of the totalQ-factor, the coupler angle of 60 deg
shows the highest average value, slightly higher than the coupler angle of 38 deg. Fringes in
Fig. 3(a) also imply the standing waves from interference in the FP resonator composed of the
metalens and the PhC structure.

Figure 3(c) plots the transmission of input light at the resonance wavelength of the cavity,
with correspondent cavity enhancement factor plotted in Fig. 3(d). As shown in those figures, the
optimized PhC cavity position is placed around L ¼ 14a, as marked by the gray dashed lines in
Fig. 3(a). The coupler angle of 60 deg (red data curves) shows the highest average data value in
peak transmission and system enhancement comparison. The cavity resonance mode profile in
log scale shown in Fig. 3(a) may indicate that the mode direction of both the left and right sides
of the resonance mode contour appears at 60 deg, which matches the PhC L3 cavity coupler
angle of 60 deg.

3.2 Metalens–PhC L3 Cavity–Metalens System

Based on the sweeping results from Fig. 3(a), we selected the PhC cavity coupler angle of 60 deg
at the optimized PhC cavity position ðL ¼ 14aÞ and added a second metalens ðf ¼ 13 μmÞ
symmetric about the center of the PhC L3 cavity based on the ray diagram of double lenses,
as shown in Fig. 3(f). We also simulated the bilateral metalens system for the same PhC L3 cavity
with the coupler angles of 38 deg, 60 deg, and 120 deg. As shown in Fig. 3(e), the highest peak
transmission of the system is around 0.6 by the coupler angle of 60 deg, which is slightly lower
than the one of the metalens–PhC L3 cavity system around 0.68 in Fig. 3(a), mainly because of
the transmission loss through the second metalens.

4 Systems Transmission Comparison

In this section, we compare the two complete integrating metalens systems. Figure 4 shows
the transmissions of the metalens–PhC WG system and the peak transmissions metalens–
PhC L3 cavity–metalens system, with three coupler angles of 38 deg, 60 deg, and 120 deg.

Fig. 4 Transmission spectra of the metalens–PhC microsystems. Dashed lines: metalens–PhC
WG system in Fig. 1(a). Solid curves: metalens–PhC L3 cavity–metalens system in Fig. 3(f), with
the PhC coupler angles of 38 deg, 60 deg, and 120 deg.
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For the transmission of the metalens–PhC WG system, the coupler angle of 38 deg obtains the
highest transmission ∼0.66 (marked in the blue curve), whereas for the bilateral metalens–PhC
L3 cavity system, the highest peak transmission ∼0.6 achieved by the 60 deg coupler angle
(marked in the red dashed line). For the PhC structure with a coupler angle of 60 deg, the total
Q-factor of the L3 cavity in the bilateral metalens system is around 6000, whereas the total
Q-factor in the PhC WG side-coupled L3 cavity is about 9500. For the system enhancement
factor, the metalens–PhC WG obtains approximately 18,000, which is higher than the bilateral
metalens–PhC L3 cavity with 13,000.

5 Conclusion

We demonstrate a low-loss on-chip microsystem based on a broadband metalens and a PhC
resonator through engineering the relative position and geometry of the PhC and the metalens.
Numerical examinations show that the coupler angle of 60 deg defined in the PhC WG interface
leads to the lowest insertion loss ð−4.2 dBÞ. However, in the scheme of the metalens–PhC L3
cavity, the coupler angle of 60 deg obtains the highest total Q-factor ð∼6100Þ and the system
enhancement factor ð∼15;000Þ. The bilateral metalens system appears to be 0.08 lower than the
metalens–PhC system concerning the peak transmission because of the loss from the second
metalens.

The designed nanophotonic structures significantly reduce the footprint, reduce the insertion
loss, and improve the mechanical robustness of on-chip light coupling into the PhC structure,
which are desired for improving sensitivity in nanophotonic sensors34–36 and reducing operation
power for PhC-based active silicon photonic components.
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