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Abstract. In agricultural remote sensing, unmanned aerial vehicle (UAV) platforms offer many
advantages over conventional satellite and full-scale airborne platforms. One of the most impor-
tant advantages is their ability to capture high spatial resolution images (1-10 cm) on-demand
and at different viewing angles. However, UAV platforms typically rely on the use of multiple
cameras, which can be costly and difficult to operate. We present the development of a simple
low-cost imaging system for remote sensing of crop health and demonstrate it on lettuce
(Lactuca sativa) grown in Hong Kong. To identify the optimal vegetation index, we recorded
images of both healthy and unhealthy lettuce, and used them as input in an expectation maxi-
mization cluster analysis with a Gaussian mixture model. Results from unsupervised and super-
vised clustering show that, among four widely used vegetation indices, the blue wide-dynamic
range vegetation index is the most accurate. This study shows that it is readily possible to design
and build a remote sensing system capable of determining the health status of lettuce at a rea-
sonably low cost (<US100). When combined with recent advances in UAV technology, this
system could lead to yield increases for lettuce growers. © The Authors. Published by SPIE
under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI:
10.1117/1.JRS.11.016006]
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1 Introduction

To ensure that world food production can rise by 70% by 2050 to match our growing population,
it is crucial that advances in crop-monitoring technology be made accessible and affordable to as
many farmers as possible.! Satellite imaging methods have become increasingly sophisticated
over the last few decades, but they still tend to suffer from inadequate image resolution, long
satellite revisit intervals, and obstructions from the local weather.” Full-scale airborne imaging
via airplanes and helicopters typically rely on multicamera/multispectral systems, which can be
costly and difficult to operate, inhibiting their widespread adoption, particularly by farmers in
developing countries.” In this paper, a simple low-cost alternative is proposed in the form of a
commercially available digital camera converted for use in remote sensing of crop health. This
system works by detecting spectral reflectance changes in crops and using these as input in an
expectation maximization (EM) cluster analysis (with a Gaussian mixture model) to generate
early warning indicators of crop stress.* The system is tested on lettuce grown in Hong Kong and
is shown to be capable of discerning between healthy and unhealthy lettuce, thus providing
lettuce growers with potential access to precision agriculture at a reasonably low cost (<US$100).

Increased crop stress is known to decrease photosynthetic activity in the vegetative canopy.’
Chlorophyll pigments are the main determinants of vegetation reflectance.® For many green veg-
etables, a deterioration of plant health leads to reflectance decreases in the near-infrared (NIR)
range of the electromagnetic spectrum and to reflectance increases in the visible range.’
Vegetation indices that capture these contrasting NIR and visible wavelengths, such as the
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normalized difference vegetation index (NDVI), have been successfully used to discern between
healthy and unhealthy crops.® However, surprisingly little work has been done on lettuce
(Lactuca sativa), with previous studies having relied on labor-intensive and costly spectroradi-
ometers’ and artificial neural networks,'® or having focused on green coverage rather than
health.!!

Recent advances in unmanned aerial vehicle (UAV) technology allow for remote sensing of
vegetation at high spatial resolutions (1 to 10 cm) throughout much of the growing season.'*!?
The high spatial resolution and weather insensitivity of these UAV platforms make them well
suited for diagnosing the health of individual plants."* When equipped with autonomous nav-
igation systems, these UAV platforms can operate independently with minimal pilot or user
input, transmitting data back to a central base station for real-time processing and analysis.'>'®
This enables ameliorating measures to be customized on a plant-by-plant basis and then
deployed at specific times, reducing in-field crop spoilage.!” Similarly, the knowledge that a
particular plant is sufficiently healthy prevents over-irrigation and the overspray of fertilizers and
pesticides. Thus, with UAV-based platforms, human interactions with the land (i.e., irrigation,
fertilization, and pesticides application) would not only be better optimized in terms of volume,
frequency, and costs, but it would also be possible to target individual plants rather than the field
as a whole.'®

In this study, a low-cost imaging system is developed and tested for low-altitude UAV-based
remote sensing of lettuce health. The hardware is built around a commercially available digital
camera that uses a charge-coupled device to capture crop-reflectance images via an optical filter.
Once captured, the images are analyzed using an unsupervised EM clustering algorithm with a
Gaussian mixture model. Section 2 describes the data collection process, camera conversion,
selection of optical filters, and selection of vegetation indices for detection of lettuce health.
Section 3 compares the performance of four vegetation indices at two camera angles (ground-
level versus oblique views) and evaluates the accuracy of the clustering algorithm used to discern
healthy from unhealthy lettuce. Section 4 summarizes the key findings of this study and provides
an outlook for future improvements and potential applications.

2 Experimental Methodology

2.1 Field and Crop Selection

Experiments were conducted in in-vitro conditions at Eco-Park, Tseung Kwan O, Hong Kong
from Jan to Jun 2016 (Fig. 1). Lettuce (Lactuca sativa) was selected as the test crop because of its
prevalence throughout Asia, its relative ease of growth, and its potential role as a high-yield food
source.'” Lettuce was also selected for its ability to showcase the high spatial resolution of the
proposed imaging system. This plant has a broad leaf area when viewed from above, with
growers tending to maintain a distinct separation between individual lettuce heads.”

Lettuce seedlings were germinated for 4 weeks and then planted into a 1.5 m X 1 m sandy
loam plot at Eco-Park, with a planting density of 9 plants per square meter. The lettuce grew
under natural illumination, facing natural weather conditions in an outdoor environment, repro-
ducing the conditions under which real crops grow. The lettuce was subjected to two conditions:
optimal healthiness (8 plants) and suboptimal healthiness (11 plants). The former condition,
which will be referred to as “healthy,” was achieved with an irrigation level of 100% (i.e., water-
ing every 2 days), fertilized every 10 days with a peanut-based fertilizer containing nitrogen,
protein, phosphorous, potassium, and calcium. The latter condition, which will be referred to as
“unhealthy,” was achieved with an irrigation level of 50% (i.e., watering every 4 days) without
any fertilizer. The first images were collected 120 days after initial planting.

2.2 Camera Conversion and Optical Filter Selection

Lettuce reflectance measurements were obtained by converting a commercially available point-
and-shoot digital camera (Canon PowerShot A2200: 1/2.3-inch CCD sensor with 4320 x
3240 pixels) into a multispectral imager sensitive to both visible and NIR light. For agricultural
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Fig. 1 Satellite view of the region around Eco-Park in Hong Kong, with the red circle indicating the
precise location of the lettuce plot. The inset shows the position of Eco-Park within Hong Kong.
Photo credit: Google Earth.

health monitoring, red wavelengths (640 nm) are generally preferred because of (i) their sensi-
tivity to changes in plant health, (ii) the stronger absorption of blue light by chlorophyll and
anthocyanin pigments, and (iii) the scattering of blue light by the atmosphere (i.e., Rayleigh
scattering), which tends to reduce the signal-to-noise ratio.”!

However, even when equipped with a red-pass filter, the red channel of most image sensors is
usually contaminated with both red (640 nm) and NIR (700 to 1000 nm) light. This can be
resolved with multicamera systems in which one camera is assigned to receive only red light
and another is assigned to receive only NIR light. However, for low-cost single-camera setups,
such as the one proposed here, a blue-pass filter can be used to separate red light from NIR light.
Blue-pass filters are particularly suited for low-altitude imaging because the crop-to-camera dis-
tance can be made sufficiently short that signal contamination due to atmospheric Rayleigh scat-
tering becomes negligible. For these reasons, the camera’s built-in infrared-reflecting hot mirror
was removed, and a Roscolux #2007 blue-pass filter was installed in its place to separate blue
transmission (450 nm) from NIR transmission (700 to 1000 nm). As Fig. 2 shows, this optical
filter has low transmittance in the red wavelengths (600 to 700 nm) but high transmittance in the
NIR (700 to 1000 nm), and blue (450 to 500 nm) wavelengths. Equipped with these modifi-
cations, the red channel of the image sensor becomes an NIR channel, which will be used in
Sec. 2.5 to compute various vegetation indices.

2.3 White Balance Calibration

Most digital cameras have white balance settings that are optimized for red, green, and blue
(RGB) inputs.?”> With the hot mirror removed and the Roscolux #2007 blue-pass filter installed,
the blue channel now receives both blue and NIR light. To compensate for this, a blue calibration
image was taken as the reference of the white balance, so that the camera digitally diminishes the
blue channel intensities while increasing the red channel intensities. Calibration of the white
balance of the camera was performed with in-sifu lighting conditions.

2.4 Image Sampling

Spectral images of lettuce were taken under natural illumination, with the camera 0.5 m away
from the plant leaf surface. The white balance was recalibrated with each measurement using
a blue reference image, as per Sec. 2.3. The compact nature of this imaging system makes it ideal
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Fig. 2 Transmittance of the Roscolux #2007 blue-pass filter, as measured in situ using a USB-650
VIS-NIR Red Tide spectrometer connected to SpectraSuite, both produced by Ocean Optics.
A tungsten-filament lamp was used as the white-light source for reference illumination.
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Fig. 3 Diagram of the experimental setup showing two different camera angles.

for top-down sweeps with low-altitude UAVs or side-on panoramas conducted on foot or on
autonomous vehicles. To assess the sensitivity of this system, both top-down and side-on
views were captured of each plant, as shown in Fig. 3. The side-on images were taken with
the camera horizontal to the lettuce. The top-down images, representing typical UAV-based mea-
surements, were taken with the camera tilted at 30 deg from the vertical.

2.5 Selection of Vegetation Indices

As explained in Sec. 2.2, the proposed imaging system cannot distinguish between red and NIR
light. This restricted our choice of possible candidates for the optimal vegetation index to those
that use either blue or green light, as well as NIR light. Four candidate indices were selected from
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Table 1 Vegetation indices selected for evaluation on lettuce.
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Fig. 4 Typical reflectance spectra for healthy and unhealthy lettuce (Lactuca sativa)."®

the literature, as shown in Table 1. Typical reflectance spectra for healthy and unhealthy lettuce
are shown in Fig. 4. It can be seen that the blue reflectance changes little between health statuses,
but that the NIR reflectance changes markedly. One of the most widely used vegetation indices,
the NDVI, has in its numerator the intensity difference (NIR — RED). Therefore, the NDVI
would be large for healthy lettuce but small for unhealthy lettuce, making it a particularly sen-
sitive indicator of plant health.® By contrast, the blue-normalized difference vegetation index
(BNDVI) uses blue light and the green-normalized difference vegetation index (GNDVI) uses
green light, which means that neither would be as sensitive as the NDVI. Nevertheless, the NDVI
cannot be used here because it requires a pure red channel, which is unavailable from the pro-
posed blue-green imaging system. Consequently, only vegetation indices that use blue or green
light were tested (see Table 1).

2.6 Image Processing

Figure 5 shows the steps in the image processing procedure. The first step was to automatically
crop the lettuce from its background so that the calculated vegetation index pertained only to the
lettuce itself [Figs. 5(1) — 5(ii)]. Next, the images were processed through a MATLAB script that
calculated the vegetation index of each pixel and produced a spatially averaged index for the
whole image [Figs. 5(1ii) — 5(iii)]. These steps were then repeated for each of the four vegetation
indices listed in Table 1.
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Fig.5 Stepsinthe image processing procedure: (i) — (ii) cropping of the lettuce plant and (i) — (iii)
computation of the vegetation index. In this example, BWDRVI| values are shown on the colorbar to
the right.

2.7 Data Analysis: Supervised and Unsupervised Clustering

The vegetation indices computed in Sec. 2.6 were analyzed for plant health using an unsupervised
EM clustering algorithm and a Gaussian mixture model.”’ This iteratively analyses the input data to
find two distinct clusters blindly from a pooled set of healthy and unhealthy plant data.”® With the
assumption that the data obeys a normal distribution, Gaussian fits were assigned to the two clus-
ters. The data were used as a training set for the EM Gaussian mixture model. This method is a
generalizable procedure that accepts processed images of any given plant and returns a probability
of it being healthy, provided that a training set for this particular species exists.?® This is a process
that eliminates bias and offers quantitative measures of plant health.’

The vegetation indices were passed into fitgmdist (a built-in function in MATLAB) to pro-
duce two Gaussian curves without any knowledge of the health status of each index value. The
two curves enable probabilistic assignment of any index value to a cluster, as well as providing a
measure of the contrast between healthy and unhealthy lettuce. For evaluation of the clustering
quality, the healthy and unhealthy data for each vegetation index were also used in a supervised
cluster analysis to manually create two Gaussian curves, providing a known baseline reference
against which the unsupervised clustering results could be compared.

In summary, our objective is to determine the most accurate vegetation index for discerning
optimally healthy lettuce from suboptimally healthy lettuce using the multispectral images cap-
tured with our low-cost camera system (Sec. 2.2). As will be discussed in Sec. 3, by selecting the
index that provides the sharpest contrast between healthy and unhealthy lettuce, we were able to
create an unsupervised EM Gaussian model for objective diagnosis of lettuce health.

3 Results and Discussion

3.1 Comparison of Vegetation Indices

Comparing the unsupervised and supervised clusters (specifically, their means and variances)
and the errors between them provides an objective indicator of the most accurate vegetation
index to be paired with the proposed imaging system. This comparison is shown in Figs. 6-9.
Of the four indices tested, the blue wide-dynamic range vegetation index (BWDRVI) is the most
capable of discerning healthy from unhealthy lettuce, as indicated by (i) the close match between
the unsupervised and supervised clustering curves, at both camera angles [Figs. 7(a) and 7(b)
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(e) Histogram of bootstrapped means of BNDVI (side-on)
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Fig. 6 Supervised and unsupervised clustering of BNDVI values. (a and b) The supervised clus-
tering, (c and d) the unsupervised clustering, and (e and f) a histogram of bootstrapped means.
The left column is for the side-on view, and the right column is for the top-down view.
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Fig. 7 Supervised and unsupervised clustering of BWDRVI values. (a and b) The supervised clus-
tering, (c and d) the unsupervised clustering, and (e and f) a histogram of bootstrapped means.
The left column is for the side-on view, and the right column is for the top-down view.

versus Figs. 7(c) and 7(d)]; and (ii) the distinct separation between the Gaussian peaks of the

healthy and unhealthy lettuce [Figs. 7(a) and 7(c) versus Figs. 7(b) and 7(d)].
To further demonstrate the superiority of BWDRVI, we define an accuracy index (Al) that

quantifies the ability of a vegetation index to correctly identify any lettuce data point as belong-
ing to either a healthy or an unhealthy cluster:
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(a) Supervised clustering (GCI side-on) (b) Supervised clustering (GCI top-down)
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Fig. 8 Supervised and unsupervised clustering of green chlorophyll index values. (a and b) The
supervised clustering, (¢ and d) the unsupervised clustering, and (e and f) a histogram of boot-
strapped means. The left column is for the side-on view, and the right column is for the top-down
view.

Al= Number of correctly assigned data points o
- Total number of data points '

For each of the four vegetation indices (Table 1), Al values were calculated by classifying the
data as belonging to either healthy or unhealthy clusters on the basis of the maximum posterior
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Fig. 9 Supervised and unsupervised clustering of GNDVI values. (a and b) The supervised clus-
tering, (c and d) the unsupervised clustering, and (e and f) a histogram of bootstrapped means.
The left column is for the side-on view, and the right column is for the top-down view.

probability.?’ In this way, an Al value was generated for each vegetation index, as shown in
Fig. 10. It can be seen that images taken from the top-down perspective and processed through
BWDRVI produce the most distinct clusters and can therefore be used to determine, with the
highest accuracy, the health status of lettuce. Furthermore, when mixing top-down and side-on
Journal of Applied Remote Sensing
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Fig. 10 Accuracy index [Eq. (1)] for the four vegetation indices listed in Table 1, at two different
camera angles (side-on and top-down views).

camera angles, BWDRVT still emerges as the most accurate vegetation index, which is consistent
with the observations seen in Fig. 7.

3.2 Bootstrap Resampling

A bootstrap resampling analysis was performed with 20,000 resamples in order to gain further
statistical confidence on the results. Subfigures (e) and (f) of Figs. 6-9 show the histograms
of the means of the bootstrapped resamples. The close correspondence of the histograms in
Figs. 7(e) and 7(f) to their respective Gaussian curves in Figs. 7(c) and 7(d) confirms that
BWDRVI is indeed well suited for unsupervised cluster analysis of lettuce health.

4 Conclusions

A simple low-cost imaging system was developed and tested for low-altitude remote sensing
of lettuce health. Built with off-the-shelf components, the system was designed with the
strategic aim of increasing the adoption rate of precision agriculture, by making crop-
monitoring technology more affordable and accessible, particularly to farmers in developing
countries.

Despite its simplicity and low cost, the proposed imaging system was shown to be capable
of discerning between healthy and unhealthy lettuce grown in a field plot in Hong Kong.
Unsupervised cluster analysis of the BWDRVI produced the most accurate Gaussian curves, as
indicated by a high accuracy index of 88.89%. The method outlined here is effective at low
altitudes and with different camera viewing angles, making it particularly well suited for deploy-
ment on UAV platforms. This study shows that accurate remote sensing of lettuce health can be
achieved through relatively simple and affordable means (<US$100). When combined with
recent advances in UAV technology, the proposed system could lead to yield increases for
lettuce growers.
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