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Abstract. The variability of the remote sensing reflectance, Rrs, now routinely retrieved from
ocean color (OC) and high spatial resolution sensors, is often used to characterize water vari-
ability due to changes in inherent optical properties of the water body. At the same time, Rrs is
partially variable because of uncertainties in its retrieval in the process of atmospheric correction.
Using data from SNPP-VIIRS and Landsat-8 OLI sensors, the contribution of the main com-
ponents to the variance of Rrs due to its spatial variability is determined based on a model in
which variances were considered proportional to the mean values of the corresponding compo-
nents. It is shown that there is practically no spatial variability in the open ocean waters and water
variability is proportional to the spatial resolution of the sensor in coastal waters. Variances due
to surface effects, inaccuracies of aerosol models, and sunglint can contribute significantly to Rrs

variance, which characterizes Rrs spatial variability, with variances due to the water variability
itself often being significantly smaller. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.15.024522]
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1 Introduction

Ocean color (OC) is indicative of ocean health and biochemistry and for that reason is listed as an
essential climate variable (ECV).1 The color of a water body is determined by scattering and
absorption by pure water and its natural constituents, such as phytoplankton, other particles, and
colored dissolved organic matter (CDOM).2 Some phytoplankton species form harmful algal
blooms, which can negatively affect human and marine life and often have severe repercussions
on a range of industries.3 Typically, <10% of the top of the atmosphere (TOA) radiance is due to
the water signal at sea level,4 with the remainder originating from scattering processes in the
atmosphere and reflections of Sun and sky on the wave-roughened water surface. It is paramount
to accurately estimate radiances at the surface level from the ones at the TOA as uncertainties
propagate into the retrieval of water parameters, characteristics of in-water particulates, concen-
trations of chlorophyll-a, and detection of algal blooms.5

Atmospheric correction uncertainties stem at least partially from the estimation of aerosol
models6,7 and air–water interface corrections,8–10 with the latter due to sky and Sun light
reflections at the wind-roughened air–water interface. Glint correction uncertainties often
have a stronger impact on retrievals in coastal waters with low water reflectance values in the
blue bands.11–14 Currently, high uncertainties in blue reflectance observations are widely
acknowledged.5,14,15 However, little is known about the specific dependencies of uncertainties
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concerning their spectral and scaling behavior in various water areas and their dependence on
meteorological conditions.

Uncertainties of the remote sensing reflectance, Rrs, are estimated by comparison of the water
parameters determined from the satellite imagery with the “true” values, which can be determined,
for an example, in very uniform clear waters in which all water parameters can be connected to the
concentration of chlorophyll-a, [Chl].16 A second approach is to compare data from satellite with
field measurements from the towers in the ocean, the Aerosol Robotic Network for Ocean Color
(AERONET-OC17,18) sites or from ships.19 Such comparisons can be carried out in a wide range of
waters; however, they are associated with multiple additional uncertainties, which are related to
the quality of field measurements themselves,20 water variability inside pixels, and time difference
between in situ and satellite data. In another approach that uses Monte Carlo (MC) simulations for
sea-viewing wide field-of-view sensor (SeaWiFS) observations,21 the retrieval process for the
remote sensing reflectance, Rrs, was repeated 1000 times, and uncertainties in Rrs were then esti-
mated as the “standard deviation of the 1000 perturbed Rrs retrievals in each band.” This derived
uncertainty was interpreted “as the precision of the Rrs retrieval due to instrument noise.”

The standard deviation of Rrs due to its spatial variability in the specific area, σspat, represents
the changes related to the variability of water inherent optical properties and together with the
coefficient of variation (CV) is of interest to the OC community, especially as a function of the
satellite spatial resolution or ground sampling distance (GSD).22 However, σspat is contaminated by
other components of Rrs uncertainites and should be rectified before being considered a proxy for
water variability. σspat is also a part of the fullRrs uncertainty and can be considered the precision of
the Rrs retrieval due to spatial variability for the specific type of the atmospheric correction process.

In this work, we focus on the spectral behavior of σspat and its components and their depend-
ence on GSD through the analysis of satellite data from the Visible Infrared Imaging Radiometer
Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) platform and Landsat-8
Operational Land Imager. First attempts in this direction were made through the analysis of
VIIRS satellite data,23 demonstrating dependence of spectra and magnitude of σspat on GSD,
which were attributed to the surface and water conditions. This work will expand on that study
by considering a broad set of parameters involved in the atmospheric correction process.

2 Theoretical Considerations

The main radiometric quantity in the processing of satellite data is remote sensing reflectance,
Rrs, which is defined as the ratio of the water-leaving radiance to the downwelling irradiance at
the sea surface, RrsðλÞ ¼ LwðλÞ∕EdðλÞ, where LwðλÞ is the water leaving radiance, EdðλÞ is the
downwelling irradiance, and λ is the wavelength. At the TOA, the total radiance, LtðλÞ, is rep-
resented as6

EQ-TARGET;temp:intralink-;e001;116;283LtðλÞ ¼ LrðλÞ þ LaðλÞ þ LgðλÞ þ tðλÞLwoðλÞ; (1)

where LrðλÞ is the radiance due the Rayleigh scattering including surface effects, LaðλÞ is the
radiance due to the aerosol scattering, LgðλÞ is the radiance due to the sun glint from the water
surface, LwoðλÞ is the water leaving radiance in the process of detection, and tðλÞ is the diffuse
transmittance of light from the water surface to the TOA. LtðλÞ has uncertainties due to all of
these components and sensor noise. In the process of the retrieval of the water leaving radiance

EQ-TARGET;temp:intralink-;e002;116;192LwðλÞ ¼ ðLtðλÞ − LrðλÞ − LaðλÞ − LgðλÞÞ∕tðλÞ: (2)

In addition, LrðλÞ can be divided into the radiance from the Rayleigh scattering in the atmos-
phere, LRðλÞ, and the radiance due to the reflectance from the ocean surface, LsurfðλÞ

EQ-TARGET;temp:intralink-;e003;116;137LrðλÞ ¼ LRðλÞ þ tðλÞLsurfðλÞ; (3)

where LsurfðλÞ ¼ LskyðλÞ � ρ, LskyðλÞ is the sky radiance and ρ is the reflectance coefficient from
the water surface. In the satellite atmospheric correction procedure, averaged surface effects are
considered in the vector radiative transfer (VRT) equations, which are based on Cox–Munk
distributions.8,24 However, each satellite image captures a specific snapshot of the ocean,
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in which the actual spatial average of the light field reflected from the wave facets may not
exactly match the average predicted by the VRT model. The actual signal may have its own
features due to instantaneous water and atmospheric conditions, spatial scales in the area,
or simplifying assumptions made within the VRT model, as Cox–Munk model is not necessarily
valid for waters in coastal areas.

Uncertainties from the abovementioned components need to be taken into account. So,
normalizing by the downwelling irradiance, EdðλÞ, uncertainty in remote sensing reflectance σ
in sr−1 is determined from

EQ-TARGET;temp:intralink-;e004;116;639σ2 ¼ ðσ2t þ σ2R þ σ2a þ σ2gÞ∕t2 þ σ2surf þ σ2water þ σ2noise; (4)

where σ2t , σ2R, σ
2
a, σ2g, σ2surf are variances of normalized LtðλÞ, LRðλÞ, LaðλÞ, LgðλÞ, LsurfðλÞ and

σ2waterðλÞ and σ2noiseðλÞ are variances due to water variability and sensor noise respectively.
Variances for the quantities at TOA σ2t , σ2R, σ

2
a, σ2g are divided by t2 in accordance with

Eqs. (1) and (2); σ2noise has 1∕t2 in its definition.25

We assumed that all standard deviations (except σnoise) in Eq. (4) as a first approximation,
are spectrally proportional to the corresponding mean values of normalized radiances with k as
proportionality coefficients (kt, kR, ka, kg ,ks, kRrs

, and kn are the fitting coefficients for LtðλÞ,
LRðλÞ, LaðλÞ, LgðλÞ, LsurfðλÞ normalized by EdðλÞ, RrsðλÞ and σnoise respectively):

EQ-TARGET;temp:intralink-;e005;116;505

σ2 ¼ ððktLt∕EdÞ2 þ ðkRLR∕EdÞ2 þ ðkaLa∕EdÞ2 þ ðkgLg∕EdÞ2Þ∕t2
þ ðksS � 0.025Þ2 þ ðkRrs

RrsÞ2 þ ðknσnoiseÞ2; (5)

where

EQ-TARGET;temp:intralink-;e006a;116;446LRðλÞ ¼ F0ðλÞτRðλÞ � 0.75 � ð1þ cos2 ΘÞ∕ð4π cos θÞ; (6a)

EQ-TARGET;temp:intralink-;e006b;116;403LaðλÞ ¼ F0ðλÞτaðλÞPa∕ð4π cos θÞ; (6b)

EQ-TARGET;temp:intralink-;e006c;116;381LgðλÞ ¼ F0ðλÞT0ðλÞTðλÞ � 0.005; (6c)

EQ-TARGET;temp:intralink-;e006d;116;358EdðλÞ ¼ F0ðλÞt0ðλÞ cos θ0; (6d)

EQ-TARGET;temp:intralink-;e006e;116;336LsurfðλÞ ¼ ρLskyðλÞ; SðλÞ ¼ LskyðλÞ∕EdðλÞ; (6e)

EQ-TARGET;temp:intralink-;e006f;116;313LtðλÞ ¼ LRðλÞ þ LaðλÞ þ tðλÞðLSðλÞ þ RrsðλÞ � EdðλÞÞ; (6f)

and in Eq. (6a), F0ðλÞ is the extraterrestrial irradiance, τRðλÞ is the Rayleigh optical thickness,
θ is the sensor zenith angle, and Θ is the scattering angle, which is the angle between solar and
viewing directions; in Eq. (6b, τaðλÞ is the aerosol optical thickness, Pa is the scattering function
for aerosols assumed as Pa ¼ 0.3 (without considering its possible spectral dependence) based
on the analysis for two AERONET-OC stations;26 in Eq. (6c), T0ðλÞ and TðλÞ are the direct
transmittance coefficients for TOA to surface and surface to TOA, respectively, and 0.005 is
the threshold for glint detection9, LGN, in sr−1; in Eq. 6(d), θ0 and t0ðλÞ are the Sun zenith angle
and the corresponding diffuse transmittance from the TOA to the water surface, respectively; in
Eq. (6e), a representative normalized sky reflectance, S ¼ Lsky∕Ed, was simulated by the VRT
RayXP code27 for the Sun zenith angle θ0 ¼ 42 deg at a viewing zenith angle of 40 deg, aerosol
optical thickness at 443 nm AOT443 nm ¼ 0.13 and Angstrom coefficient 1.0, parameters that are
very close to the average ones for all observations and are used throughout this study. Sky radi-
ance, Lsky, differs from scene to scene, whereas the normalized radiance, Lsky∕Ed, has much less
variability; the reflectance coefficient was considered to be ρ ¼ 0.025, which is the typical
reflectance coefficient at a 40 deg viewing angle. It should be emphasized that the spectral shapes
of the main components in Eqs. (6a)–(6e) are of primary interest; changes of values that were
assumed constant in the model do not affect these shapes or the contribution of the corresponding
uncertainties from these components to the total σ2ðλÞ. The glint and noise components are
included in the expression for the total variance [Eq. (4)] but were not included in the total
radiance LtðλÞ in Eq. (6f) since ideally their values should be zero.
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The model of Eqs. (5) and (6) can be used to analyze contributions of spectral components to
the total σ2ðλÞ if the latter can be determined from the comparison of satellite – in situ data. Our
current work is primarily focused on the contributions of the same spectral components but only
to the variance σ2spat referring to the RrsðλÞ spatial variability in the area, which can characterize
water variability, so σðλÞ was replaced by σspatðλÞ in Eq. (5) and in the further analysis.

σnoise was determined based on typical radiance at TOA LtðλÞ, signal-to-noise ratio (SNR),
and transmittance coefficients t0ðλÞ for the TOA to the surface and tðλÞ for the surface to TOA.25
σnoise for VIIRS, SeaWiFS, Moderate Resolution Imaging Spectroradiometer (MODIS), and
Landsat 8 Operational Land Imager (OLI) with data taken from Refs. 16, 28, and 29 are shown
in Fig. 1. A preliminary study23 showed that in moderately clear waters σspatðλÞ was close to the
standard deviation spectrum, σF, determined by Franz and Karaköylü21 for SeaWiFS, and this
spectrum was added for comparison.

Thus, in terms of the single pixel processing, noise can be a significant contributor to σspatðλÞ,
but with the often-used representation of data averaged over multiple pixels, this contribution is
reduced inversely proportional to the square root of the number of pixels.

Mean spectra of RrsðλÞ and σspatðλÞ, quantities from Eq. (6) were determined by processing of
VIIRS data in the specific area with the wind speed W in each of the ranges W < 3 m∕s,
3 < W < 5 m∕s, and W > 5 m∕s. With these parameters calculated for a scene, a nonlinear
least-squares fit was carried out in MATLAB using the Levenberg–Marquardt technique30,31

to determine the respective values of k coefficients for each scene or set of scenes, taking ad-
vantage of the differences in the spectra of σspatðλÞ components in Eq. (5). These coefficients are
assumed to be representative of the respective contributions of the atmospheric, water, and sky
reflection components to the observed spatial scale variance σ2spatðλÞ of the Rrs since Rrs is the
result of the processing through the atmospheric correction. By this operation, the actual con-
tribution of σwaterðλÞ to σspatðλÞ is determined at different spatial resolutions since σwaterðλÞ better
characterizes water optical variability than σspatðλÞ. Since, as was mentioned before, in the clear
waters, the σspatðλÞ spectrum was very close to σFðλÞ,21 the latter will be shown as a benchmark
for the results given below that are related to σspatðλÞ.

3 VIIRS and Landsat OLI Satellite Data and Study Areas

3.1 VIIRS Data

Satellite Level 2 imagery (2018.0) for VIIRS was downloaded from the NASA Ocean Color
website.6,32–34 Observations were retrieved for the period of January 2012 to December 2018
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Fig. 1 σnoise for several satellite sensors.
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for three AERONET-OC site areas: the Long Island Sound Coastal Observatory (LISCO),
WaveCIS site in the Gulf of Mexico, University of South California (USC) site in California
waters, and the area of Marine Optical Buoy (MOBY) in Hawaii. NASA Level 2 data files for
VIIRS include geophysical products of the atmosphere and ocean, such as aerosol optical thick-
ness (AOT), remote sensing reflectance, RrsðλÞ, and the level 2 quality flags. The Sun zenith
angle, sensor viewing angle, and sensor azimuth angle were used to determine radiances and
irradiance in Eq. (6). The VIIRS data have a nadir resolution of 750 m. Pixels used for matchup
comparison were averaged over three spatial resolutions (3 × 3, 5 × 5, and 7 × 7 pixel boxes),
centered at the in-situ observation location,35 and the standard deviation between pixels was
recorded. Pixels flagged by at least one of the following conditions were excluded: land, cloud,
failure in atmospheric correction, stray light (except for LISCO), bad navigation quality, high or
moderate glint, negative Rayleigh-corrected radiance, negative water-leaving radiance, viewing
angle greater than 60 deg, and solar zenith angle greater than 70 deg. With this selection of study
areas, the whole range of water types from very coastal in LISCO to very clear in Hawaii with
moderate coastal in the Gulf of Mexico are covered. The analysis is carried out at VIIRS visible
wavelengths 410, 443, 486, 551, and 671 nm.

3.2 Landsat-8 OLI Data

The Landsat-8 OLI has a resolution of 30 m and a field-of-view of 15 deg (�7.5 deg from
nadir). To analyze the dependence of uncertainties on various scales, the aquatic reflectance
product was used. OLI bands are centered at 440, 480, 560, and 660 nm wavelengths. The
L2 data were downloaded from the USGS Earth Resources Observation and Science Center
Science Processing Architecture on Demand Interface website36 for the period 2013 to 2019.
RrsðλÞ was calculated by dividing the dimensionless aquatic reflectance by π and was taken for
those imageries that pass the selection by the level 2 quality flags. Pixels flagged by at least one

Fig. 2 Areas and scenes of study: (a) Long Island Sound (LIS) and NY Harbor, (b) Gulf of Mexico,
(c) California waters, and (d) MOBY area, Hawaii.
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of the following conditions were excluded: land, cloud, failure in atmospheric correction, bad
navigation quality, high or moderate glint, sea ice, viewing angle greater than 60 deg, and solar
zenith angle greater than 70 deg. For each spatial resolution, RrsðλÞ was averaged, and the stan-
dard deviation was calculated. Nine spatial resolutions were implemented for each imagery with
the following square pixel box scale: 3, 7, 19, 31, 35, 51, 75, 125, and 175 pixels (90, 210, 570,
930, 1050, 1530, 2250, 3750, and 5250 m, at nadir). Atmospheric correction for OLI37,38 was
implemented across 7 × 7 pixels to minimize noise effects, which need to be considered in the
dependence of various parameters on the spatial resolution.

In both VIIRS and OLI processing, RrsðλÞ spectra with Rrsð412Þ > 0.006 water were con-
sidered open ocean; otherwise, they were considered coastal water area cases. Spectra with
Rrsð412Þ < 0, which are typically due to the very inaccurate aerosol model in the atmospheric
correction, were not included in the processing. Such cases require advanced atmospheric cor-
rection procedures,39 a discussion of which is outside the scope of this work. The areas of study
and scenes analyzed from OLI imagery are shown in Fig. 2.

4 Results

4.1 VIIRS Data Analysis

There are seven k coefficients in Eq. (5) that need to be determined from the fitting procedures,
and VIIRS has only five bands in the visible part of the spectrum. Four terms were considered to
be main potential contributors to σspatðλÞ: σRðλÞ, σaðλÞ, σsurfðλÞ, and σwaterðλÞ; it was assumed
that σtðλÞ was represented by its components and that the impact of two other terms, σgðλÞ and
σnoiseðλÞ, was analyzed by adding one of them as a fifth term. It was found that the impact of
noise σnoiseðλÞ was small and the contribution of the glint component σgðλÞ was much more
pronounced. Further results are shown for the fitting with σgðλÞ being the fifth component.
Typical spectra for all components involved normalized to the value at 412 nm are shown for
the open ocean and coastal water station in Fig. 3. It should be emphasized that in Eq. (4) σ2R and
σ2a are divided by the transmittance coefficient and σ2surf is not, so a combination of Rayleigh and
aerosol scattering contributions has a normalized spectrum that is different from the spectrum of
surface effects, which is proportional to the sky radiance. For the open ocean, the MOBY site
surface effects spectrum in Fig. 3(a) is very close to the normalized spectrum of σspatðλÞ and, as
shown in Fig. 4, is practically the only component represented in the fitting procedure, with the
σsurfðλÞ and σfitðλÞ being undistinguishable for all three wind speed ranges and σfitðλÞ being the
best fit of spectral components into σspatðλÞ with k coefficients. These spectra are very close to
the spectrum σFðλÞ.21 The surface component is also dominant at the USC site open ocean waters
with a small contribution of σRðλÞ and σaðλÞ components. The corresponding spectra of RrsðλÞ in
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Fig. 3 Example spectra of σðλÞ components normalized to their values at 412 nm: (a) open ocean
waters and (b) coastal waters.
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the normalized form are also shown in Figs. 3(a) and 3(b) for open ocean and coastal waters,
respectively, and in more detail in the Landsat OLI data in Figs. 10–12.

For the coastal waters in Fig. 5, there are some contributions from the Rayleigh and aerosol
components (USC and WaveCIS sites), but the main effects are from the surface sky reflection,
glint, and water variability. The changes of the k coefficients related to all of these effects with
the spatial resolution will be shown below together with Landsat data.

4.2 Landsat Data Analysis and Comparison with VIIRS Data

NASA atmospheric correction for Landsat OLI is similar to the atmospheric correction for
VIIRS,37,38 and OLI fine spatial resolution permits an expanded analysis of σspatðλÞ dependence
on GSD in a broad range. However, OLI has almost vertical viewing, whereas VIIRS viewing
angles are in the range of 0 deg to 56 deg, which can impact Sun and sky glint contributions.
In terms of the application of Eqs. (4)–(6) of the proposed model to σspatðλÞ from OLI, the main
difficulty is that OLI has only four bands (whereas VIIRS has five bands), which limits simulta-
neous analysis of the critical parameters’ contributions. After preliminary analysis, σRðλÞ was
excluded from the consideration, and only contributions of aerosol, σaðλÞ, surface effects,
σsurfðλÞ, sun glint, σgðλÞ, and water variability, σwaterðλÞ, were analyzed. Examples of the fitting
procedures for open ocean waters near the Hawaii site and WaveCIS coastal site for three spatial
resolutions are shown in Figs. 6 and 7. σspatðλÞ is small at low resolutions and gradually increases
for higher resolutions being very close to σFðλÞ, with main contributions being from surface
effects and aerosol components in the open ocean waters.

At the WaveCIS site, there are clear contributions from all components, with increasing
effects due to water variability proportional to the RrsðλÞ spectrum for higher GSD. Mean values
of normalized radiances for different components in Eq. (6) vary significantly, so k coefficients
are given in Figs. 6 and 7 to demonstrate the contribution of components associated with these
coefficients.
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Since there were no clear differences in the dependence of k coefficients on wind speed,
changes of the fitting k coefficients as a function of GSD averaged over all wind speeds are
shown in Fig. 8 for OLI.

The main outcomes from the application of Eqs. (5) and (6) of the model to OLI data at all
considered sites are as seen in Figs. 8 and 9. In the open ocean waters (Hawaii area), the main
contributions come from the surface effects gradually increasing from small values at small
GSDs to ks ¼ 0.1 to 0.12 after about 1500 m. Recalling that the surface effect itself was con-
sidered the sky normalized radiance multiplied by the average surface reflectance coefficient
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Fig. 6 σspatðλÞ for the Hawaii – MOBY buoy site (solid black line) and its components on three
different GSD: 210 m (p-value: 0.0231), 1050 m (p-value: 0.0309), and 2250 m (p-value:
0.0185); the black dashed line is the fitting from Eq. (5). k values (1050 m): ka ¼ 0.0139;
ks ¼ 0.0936; kg ≈ 0; kRrs

≈ 0.
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0.025, ks ¼ 0.1 corresponds to 10% changes in this value. There were also contributions from
the aerosol component through ka ¼ 0.008 to 0.015, with its relative impact being visible in
Fig. 6. There is not any spatial variability in Hawaii waters until GSD of about 1500 m, and
it is very small at larger distances in terms of the kRrs

coefficient. Glint effects were not visible in
open ocean waters.

In coastal waters, surface effects are smaller than in the open ocean and vary from site to site
with average ks being about 0.06 and larger contributions typically being from the aerosol com-
ponent ka ≈ 0.02, with some exceptions. As a reminder, in Eq. (6c), the glint mean value was
determined based on LGN ¼ 0.005, so kg ¼ 0.02 to 0.05 represents 2% to 5% of this value.
The most prominent effect is seen from the water variability with kRrs

changing approximately
proportionally to GSD and reaching about 7% to 14% at about 5000 m.

Due to different NIR wavelengths being used in the atmospheric correction models for OLI
and VIIRS and different viewing angles, a good match among the ks, ka, kg coefficients for these
two sensors was not expected. To analyze the consistency of σspat components for two sensors, a
combined variance σ2sag (“s” for the surface, “a” for aerosols, and “g” for glint in the subscript)
was calculated as σ2sag ¼ σ2 − σ2water ¼ σ2 − ðkRrsRrsÞ2 with the results of comparison for 551 nm
shown in Fig. 9 together with kRrs for both sensors; a reasonable similarity with the smallest σsag
in Hawaii and the largest in the LISCO area is demonstrated. A very small kRrs

in the open ocean
and an approximately linear increase with GSD in coastal waters are consistent for both sensors.

Examples of OLI processing in the Hawaii, WaveCIS, and LISCO areas are shown in
Figs. 10–12, respectively. In addition to the mean RrsðλÞ (first column), σspatðλÞ spectra are shown
for the spatial resolution 90 to 5250 m (column 2) and CVs were calculated as a function of
GSD and spectrally (columns 3 and 4). OLI observes scenes almost vertically, so the dependence
of GSD on the viewing angle is small and was not considered. Three rows in each figure cor-
respond to wind speed ranges W < 3 m∕s, 3 < W < 5 m∕s, and W > 5 m∕s. CVs are presented
in two forms: as σspatðλÞ∕RrsðλÞ, which includes all effects, and as kRrs

ðλÞ¼σwaterðλÞ∕RrsðλÞ,
which is directly related to the water variability.
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Very clear waters in the Hawaii area are represented by the station near the MOBY site with
spectra shown in Fig. 10 with specific shapes of σspatðλÞ, small CVs, and changes in CV values
occurring at low GSD below ∼500 m, which then become constant for larger GSD. At the same
time, kRrs

ðλÞ at this station, as was shown above, is almost equal to zero, meaning that all CVs are
related to effects other than water variability.

In the WaveCIS coastal area (Fig. 11), the impact of water variability is much stronger than in
the open ocean waters, and kRrs

is in a similar range as CVs with some differences depending on
the wavelength and wind speed. In the LISCO area (Fig. 12), surface and glint effects are much
more pronounced than at WaveCIS (see Fig. 5), and kRrs

is usually smaller than CV for all wave-
legths. The Moses et al.22 curve determined for LISCO based on the variability of the water
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absorption at 440 nm is close to the CV dependence on GSD for the blue band (at least for low
and high wind speeds) and is higher than kRrs

.

5 Conclusions

A model was developed to estimate the contribution of the main components that play a role in
atmospheric correction, to the variance spectra of remote sensing reflectance σ2ðλÞ in different
water types. The model was applied to determine the spectral structure of remote sensing reflec-
tance variances due to the spatial variability σ2spatðλÞ and their dependence on GSD based on
satellite imagery from SNPP-VIIRS and Landsat 8-OLI sensors. It was shown that, in the open
ocean, there was practically no water variability up to GSD of about 1500 m, it remained low for
larger GSD, and σspatðλÞ was found to be governed mostly by surface and aerosol components.
In coastal waters, on average, there were similar variance contributions from surface and
aerosol components, whereas water variability played a dominant role and increased proportion-
ally to GSD. The coefficient, kRrs

, which characterizes water variability, was typically smaller
than CV determined directly as σspatðλÞ∕RrsðλÞ, and therefore water variability cannot be accu-
rately determined from the latter ratio, which is due to the full spatial variability σspatðλÞ.
Relationships shown in Figs. 8 and 9 allow for estimating these differences. The differences
are especially pronounced in the blue bands, where the contributions of surface and aerosol
effects are larger.
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