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Abstract

Significance: Although emerging evidence suggests that the hemodynamic response function
(HRF) can vary by brain region and species, a single, canonical, human-based HRF is widely
used in animal studies. Therefore, the development of flexible, accessible, brain-region specific
HRF calculation approaches is paramount as hemodynamic animal studies become increasingly
popular.

Aim: To establish an fMRI-compatible, spectral, fiber-photometry platform for HRF calculation
and validation in any rat brain region.

Approach:We used our platform to simultaneously measure (a) neuronal activity via genetically
encoded calcium indicators (GCaMP6f), (b) local cerebral blood volume (CBV) from intra-
venous Rhodamine B dye, and (c) whole brain CBV via fMRI with the Feraheme contrast agent.
Empirical HRFs were calculated with GCaMP6f and Rhodamine B recordings from rat brain
regions during resting-state and task-based paradigms.

Results: We calculated empirical HRFs for the rat primary somatosensory, anterior cingulate,
prelimbic, retrosplenial, and anterior insular cortical areas. Each HRF was faster and narrower
than the canonical HRF and no significant difference was observed between these cortical
regions. When used in general linear model analyses of corresponding fMRI data, the empirical
HRFs showed better detection performance than the canonical HRF.

Conclusions: Our findings demonstrate the viability and utility of fiber-photometry-based HRF
calculations. This platform is readily scalable to multiple simultaneous recording sites, and
adaptable to study transfer functions between stimulation events, neuronal activity, neurotrans-
mitter release, and hemodynamic responses.
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1 Introduction

Our interpretation of functional MRI data is built on the assumption that neuronal and vascular
responses are tightly coupled.1,2 The process by which changes in local neural activity lead to
changes in cerebral blood flow (CBF) and blood volume3 is often termed neurovascular coupling
and this relationship can be described mathematically with a hemodynamic response function
(HRF). Early fMRI studies typically assigned a single canonical human HRF across brain
regions (hereafter as canonical HRF), derived from two gamma functions.4 However, emerging
evidence shows that neurovascular coupling can be substantially different between species,
brain regions, and physiological conditions.5–10 Thus, use of the canonical HRF could lead
to inaccurate interpretation of fMRI data, especially in preclinical studies that often utilize anes-
thetized non-human species. Some recent fMRI studies have adapted to use empirically derived
HRFs (hereafter as empirical HRFs), but these current approaches have notable limitations
(to be discussed in the next paragraph), and a majority of studies still rely on the canonical
HRF.11–13 Therefore, the development of techniques to acquire flexible, accessible, brain-
region specific HRF is paramount as the number of hemodynamic animal studies continues
to grow.

To date, there are two distinct approaches commonly used to obtain empirical HRFs.
(1) multi-modal measurements, wherein neuronal and vascular activity are measured simulta-
neously and the HRF is obtained by deconvolution of the two signals;14 and (2) MRI-data driven
approaches, which recreate representative hemodynamic responses from repeated observations
of hemodynamic changes relative to the timings of external stimuli, spontaneous events, or state
changes.15–19 While MRI-data driven approaches can be applied to most datasets, because they
rely on computational modeling rather than ground-truth data, HRF estimates will differ accord-
ing to the choice of model (linear or non-linear) and associated parameters, which are often the
subject of debate. Conversely, the multi-modal measurement approach most often combines
fMRI with electrophysiology for simultaneous measurement of hemodynamics and ground-truth
neuronal activity.20–25 One major challenge of this approach is that electrophysiology signal is
extremely sensitive to Eddy current-induced noise from fMRI acquisitions, making it very dif-
ficult to get acceptable quality signals.20–25 Further, while electrophysiology tools provide high
temporal resolution (up to kHz) for measuring neuronal activity, this resolution is seldom ben-
eficial to HRF calculations because the sampling rate of fMRI hemodynamic information is
typically on the order of seconds.

Emerging optical approaches like multi-photon microscopy and wide-field optical imaging
have become popular for multimodal measurement of neuronal activity26–34 and hemodynamic
signals26–28 without the need for fMRI. These approaches have high sampling rate (∼10 to
40 Hz26–33) and provide spatial distribution information, making them suitable for measuring
multiple brain regions simultaneously.27,28 However, signal loss through brain tissue greatly
limits the detection depth of both multi-photon microscopy26,29–33 and wide-field optical
imaging.27,28 For example, wide-field imaging and two-photon microscopy can commonly reach
a detection depth of just 400 to 500 μm from the brain surface,26–28,31 while three-photon micros-
copy can reach deeper to ∼1200 μm,29,30,32,33 slightly beyond cortical depth in mice. Many sub-
cortical brain regions (e.g., striatum, thalamus, amygdala, etc.) are still beyond reach.

An alternative optical measurement approach is fiber-photometry, which makes use of the
same optical fiber to excite fluorescent proteins and receive emitted photons from targeted brain
areas. In an obvious advantage over other optical techniques, fiber-photometry can be used any-
where inside the brain with minimal tissue damage along the fiber tract (typically 100 to 250 μm
in diameter). Further, this technique is readily MRI-compatible, and with the recent advent of
genetically encoded calcium indicators such as GCaMP6f, it is relatively simple to obtain genet-
ically defined neuronal activity during fMRI,35–41 offering an excellent opportunity to shed light
on neurovascular coupling mechanisms in both cortical and subcortical structures. However,
multimodal recording of neuronal and hemodynamic activity with only fiber-photometry, cir-
cumventing the temporal limitations and complexity of fMRI, has not been well-established. To
further advance the field, we established a multi-channel, spectral fiber-photometry platform,
which allows simultaneous measurement of multiple fluorescent sources (e.g. GCaMP6f and
a red-shifted fluorescent vascular dye), in multiple brain regions.42,43 Importantly, this platform

Chao et al.: Computing hemodynamic response functions from concurrent spectral fiber-photometry. . .

Neurophotonics 032205-2 Jul–Sep 2022 • Vol. 9(3)



enables measurement of the full emission spectrum with improved accuracy, which is crucial for
the quantification of spectrally overlapped fluorescent signal changes.

In the current study, we multiplexed our multi-channel, spectral fiber-photometry platform
with fMRI to measure three sources of neurophysiological signal at the same time: (a) neuronal
activity from genetically encoded calcium indicators (GCaMP6f) expressed on principal neu-
rons, (b) photometry cerebral blood volume (photometry-CBV) from intravenously administered
red fluorescent dye (Rhodamine B), and (c) fMRI cerebral blood volume (fMRI-CBV) from
fMRI with a vascular contrast agent (Feraheme). First, we benchmark the use of Rhodamine
B and evaluated the signal changes and contrast-to-noise ratio (CNR) of photometry-CBV and
fMRI-CBV within the primary somatosensory cortex (S1) during forepaw stimulation. Next, we
computed an empirical HRF for S1 from spontaneous neuronal activity and photometry-CBV
changes in the absence of stimulation, and determined the optimal data length for HRF calcu-
lation, demonstrating the ability of our platform to calculate empirical HRFs from resting-state
photometry data. Then we cross-validated our findings by direct comparison of empirical HRFs
derived from simultaneously acquired photometry-CBVand fMRI-CBV signals aligned to fore-
paw stimulation. Having validated our photometry-derived HRF method, we assessed the utility
of this platform over the use of the canonical HRF within a general linear model (GLM) to detect
significant whole-brain activity changes to forepaw stimulation in fMRI data. Finally, we used
our platform to calculate HRFs from resting-state data from several other brain areas, including
the prelimbic cortex located deeper in the brain, and show the performance of these empirical
HRFs versus the canonical HRF in GLM detection of brain-wide networks from fMRI data.

2 Materials and Methods

2.1 Subject

This study employed a total of 9 wild type male Sprague Dawley (SD) rats and 10 Thy1-
GCaMP6f transgenic male Long-Evans (LE) rats weighing between 300 and 600 g. All proce-
dures were performed in accordance with the National Institutes of Health Guidelines for Animal
Research (Guide for the Care and Use of Laboratory Animals) and approved by the University of
North Carolina (UNC) Institutional Animal Care and Use Committee. The SD rats were sep-
arated into two cohorts. In the first cohort (n ¼ 5), GCaMP was expressed in the right forelimb
S1 (S1FL) using AAV9-CaMKIIα-GCaMP6f-WPRE-SV40 (titer ≥ 1 × 1013 vg∕mL, Penn
Vector Core). This cohort of rats underwent multi-dose test of Rhodamine B to optimize the
Rhodamine B dose for photometry-CBV recording [Figs. 1(d)–1(g)], and received electrical
forepaw stimulation to validate the evoked GCaMP and Rhodamine B signal changes
[Figs. 1(h)–1(k)]. In the second cohort (n ¼ 4), GCaMP and hM3Dq (a Gq-DREADD)
were co-expressed in the right S1FL using a mixture of AAV9-CaMKIIα-GCaMP6f-WPRE-
SV40 (titer ≥ 1 × 1013 vg∕mL, Penn Vector Core) and AAV5-CaMKIIα-hM3Dq-mCherry
(titer ≥ 2 × 1012 vg∕mL, Addgene) at 1:1 ratio to demonstrate that the HRF is state-dependent
with and without DREADD. In Fig. 6, we used Thy1-GCaMP6f transgenic rats47 (n ¼ 10)
expressing the fluorescent calcium activity indicator, GCaMP6f,14 under the Thy1 promoter,48

allowing measurement of cortical output activity from pyramidal neurons. All rats in this study
were housed under environmentally controlled conditions (12 h normal light/dark cycles, lights
on at 7am; 20°C to 23°C and 40% to 60% relative humidity), with ad libitum access to food
and water.

2.2 Stereotactic Surgery

All coordinates used in this study are listed as follows. S1: AP ¼ þ0.5 mm and
ML ¼ þ3.7 mm, DV ¼ 1.3 mm, prelimbic cortex (PrL): AP ¼ 3.3 mm and ML ¼ 0.8 mm,
DV ¼ 3.5 mm, anterior cingulate cortex (ACC): AP ¼ 1.5 mm and ML ¼ 0.8 mm,
DV ¼ 2 mm, retrosplenial cortex (RSC): AP ¼ −2.2 mm and ML ¼ 0.7 mm, DV ¼ 2 mm,
anterior insular cortex (AI): AP ¼ 3.2 mm and ML ¼ 4.2 mm, DV ¼ 3.5 mm. For all surgical
procedures, rats were anesthetized initially by 5% isoflurane and maintained by a constant flow
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of 2-3% isoflurane mixed with medical air. Rectal temperature was continuously monitored and
maintained within 37°C� 0.5°C using a feedback-controlled heating pad (Harvard Apparatus,
Model 557020, Holliston, MA). For the first two cohorts of experiments, SD rats were head-
fixed to a stereotactic frame (Kopf Instruments, Model 962, Tujunga, California). The skin was
opened to expose the skull surface, and burr holes were prepared according to experimental
coordinates. Microinjections were performed at a flow rate of 0.1 μl∕min for 1 μl, and an addi-
tional 10 min was given for virus diffusion prior to slow retraction of the microsyringe needle.
The burr holes were then sealed with bone wax (Fisher Scientific, Pittsburgh, PA), and the wound
was sutured. A month after the virus microinjection, the skin was reopened to expose the skull,
then the bone wax was removed and optical fibers (200 μm in diameter; NA: 0.39) were chroni-
cally implanted to coordinates 0.3 mm above the virus injection sites. We did not identify any
significant size change in adult rat brains during the 1-month virus incubation before fiber
implantation according to our recent study,49 thus no re-adjustment of the coordinates for fiber
implantation was applied. Four MR-compatible miniature brass screws (Item #94070A031,
McMaster Carr, Atlanta, Georgia) were anchored to the skull, then the surface of the skull was
covered with dental cement to seal implanted components and the wound was sutured to further
protect the surgical site. The screws and dental cement helped hold the implanted fibers firmly on
the skull. For the third cohort of the experiment that used transgenic LE rats, most of the surgical
procedurals were the same as the first two cohorts except no virus was microinjected. At the end
of every surgical procedure, lidocaine jelly (#866096, Henry Schein Inc., Melville, New York)
was applied around the surgical wound for pain relief and to prevent the rat scratching the
wound. Meloxicam (#6451720670, Henry Schein Inc., Melville, New York) was also given
by oral administration for further pain relief. Rats were allowed at least one week for recovery
from surgical procedures before any further experiments.

2.3 Experimental Setup

The spectrally resolved fiber-photometry system in this study replicates an established system
described previously.42,43 Laser beams from a 488 nm 60 mW continuous wave (CW) laser
(OBIS 488 LS-60, Coherent, Santa Clara, California) and a 561 nm 50 mW CW laser
(OBIS 561 LS-50, Coherent, Inc.) are aligned and combined by broadband dielectric mirrors
(BB1-E02, Thorlabs, Newton, New Jersey) and a long-pass dichroic mirror (ZT488rdc, Chroma
Technology Corp), then launched into a fluorescence cube (DFM1, Thorlabs, Newton, New
Jersey). Extra neutral density filters (NEK01, Thorlabs, Newton, New Jersey) are placed between
the combined laser beam and the fluorescence cube to adjust the final laser power. The fluo-
rescence cube contains a dichroic mirror (ZT488/561rpc, Chroma Technology Corp) to reflect
and launch the combined laser beam through an achromatic fiber port (PAFA-X-4-A, Thorlabs,
Newton, New Jersey) into the core of a 105∕125 mm core/cladding multi-mode optical fiber
patch cable. The distal end of the patch cable is connected to an implantable optical fiber
probe for both excitation laser delivery and emission fluorescence collection. The emission fluo-
rescence collected from the fiber travels back along the patch cable into the fluorescence cube,
passes through the dichroic mirror and an emission filter (ZET488/561 m, Chroma Technology
Corp, Bellows Falls, Vermont), then launches through an aspheric fiber port (PAF-SMA-11-A,
Thorlabs, Newton, New Jersey) into the core of an AR-coated 200∕230 mm core/cladding multi-
mode patch cable (M200L02S-A, Thorlabs, Newton, New Jersey). The AR-coated multi-mode
patch cable is connected to a spectrometer (QE Pro-FL, Ocean Optics, Largo, Florida) for spec-
tral data acquisition, which can be operated by a UI software OceanView (Ocean Optics, Largo,
Florida). To achieve concurrent recording during fMRI, trigger mode is used in OceanView,
where the photometry system is synchronized with MRI using an Arduino micro-controller
board. The stimulation system uses a DAQ board (1208Hs-2AO, Measurement Computing
Corp., Norton, Massachusetts) to send out stimulus triggers according to the stimulus paradigm
set in a homemade software program. During fMRI experiments, the DAQ synchronizes stimu-
lation pulses via triggers from the MRI system. Stimulation pulses were driven by a constant
current stimulus isolator (A385RC, World Precision Instruments, Sarasota, Florida) for forepaw
electrical stimulation experiments.
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2.4 Animal Subject Preparation and Physiology Management

General animal subject preparation and maintenance followed the same protocol detailed in our
previous publications.50,51 Rats were initially anesthetized with 4% isoflurane (Vaporizer
#911103, VetEquip Inc., Livermore, California) mixed with medical air and endotracheally intu-
bated using a 14G x 2“(>400 g) or 16G x 2“(<400 g) i.v. catheter (Surflash Polyurethane
Catheter, TERUMO, Somerset, New Jersey). Respiration was maintained by a ventilator
(SAR-830 or MRI-1, CWE Inc, Ardmore, PA) set at 60 breaths∕min and an inspiration time
ratio of 40%. A rectal probe was used to monitor core body temperature (OAKTON Temp9500,
Cole-Parmer, Vernon Hills, Illinois) and a capnometer was used to monitor heart rate, peripheral
blood oxygen saturation, and end-tidal CO2 (SURGIVET

® V90041LF, Smith Medical, Dublin,
Ohio). Body temperature was maintained at 37°C� 0.5°C using a circulating water blanket con-
nected to a temperature adjustable water bath (Haake S13, Thermo Fisher Scientific, Waltham,
Massachusetts). Ventilation tidal volume was adjusted to keep the heart rate at 300� 50 beats
per minute, peripheral blood oxygen saturation above 90%, and end-tidal CO2 between 2.8%
and 3.2%. End-tidal CO2 values from this capnometer system were previously calibrated against
invasive sampling of arterial blood gas, reflecting a partial pressure of carbon dioxide (pCO2)
level of 30 to 40 mm Hg.52,53 For studies using Rhodamine B for CBV measurements, a
bolus dose of 40 mg∕kg (Sigma–Aldrich, St. Louis, Missouri) was injected via tail vein.
For DREADD studies, a single dose of clozapine (0.05 mg∕kg, Sigma–Aldrich, St. Louis,
Missouri) was injected via tail vein.

2.5 Concurrent Functional MRI Scan with Fiber-Photometry Recording

All fMRI data in this study were collected on a Bruker BioSpec 9.4-Tesla, 30-cm bore system
with 6.0.1 on an AVANCE II console (Bruker BioSpin Corp., Billerica, Massachusetts). An RRI
BFG 150/90 gradient insert (Resonance Research, Inc, Billerica, Massachusetts) paired with a
Copley C700 gradient amplifier (Copley Controls Corp., Canton, Massachusetts) was used. A
homemade single-loop surface coil with an internal diameter of 1.6 cm was used as a radio-
frequency transceiver. Isoflurane concentrations were adjusted to 2% and animals were secured
in to a custom-built, MR-compatible rat cradle. Animal physiology was monitored and main-
tained as described in the previous paragraph.

Upon stabilizing the animals, a pair of needle electrodes was inserted under the skin of fore-
paw for stimulation. Before connecting the fiber-photometry patch cable, all light in the room
was turned off, the final output power of 488- and 561-nm laser were adjusted to balance spectral
amplitudes.42 The maximum power used in this study was <100 μW. Then, a background spec-
trum was measured as a reference by pointing the fiber tip to a nonreflective background in the
dark room. This background spectrum was then automatically subtracted by OceanView during
photometry recording. Following setup processes, the cradle was pushed into MRI bore, and a
bolus of dexmedetomidine (0.025 mg∕kg; Dexdormitor, Orion, Espoo, Finland) cocktailed with
paralytic agent rocuronium bromide (4.5 mg∕kg; Sigma–Aldrich, St. Louis, Missouri) was
injected into the tail vein. Fifteen minutes after the bolus injection, continuous intravenous infu-
sion of dexmedetomidine (0.05 mg∕kg∕h) and rocuronium bromide (9 mg∕kg∕h) cocktail was
initiated and the isoflurane concentration was adjusted to 0.5% to 1% for the entire scanning
period.54

Magnetic field homogeneity was optimized first by global shim and followed by local
first- and second-order shims according to B0 map. Anatomical images for referencing were
acquired using a rapid acquisition with relaxation enhancement (RARE) sequence (12 coronal
slices, thickness ¼ 1 mm, repetition time ðTRÞ ¼ 2500 ms, echo time ðTEÞ ¼ 33 ms,
matrix size ¼ 256 × 256, field-of-view ðFOVÞ ¼ 25.6 × 25.6 mm2, in plane resolution
0.1 × 0.1 mm, average = 8, RARE factor ¼ 8). The center of the 5th slice from the anterior
direction was aligned with the anterior commissure. Blood-oxygen-level-dependent (BOLD)
fMRI scans were acquired using a multi-slice single-shot gradient echo echo-planar imaging
(GE-EPI) sequence (slice thickness ¼ 1 mm, TR ¼ 1000 ms, TE ¼ 14 ms, matrix size ¼
80 × 80, FOV ¼ 25.6 × 25.6 mm2, in plane resolution 0.32 × 0.32 mm, bandwidth ¼
250 kHz). CBV fMRI scans were acquired using a similar GE-EPI sequence with a shorter
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TE (slice thickness = 1 mm, TR ¼ 1000 ms, TE ¼ 8.1 ms, matrix size ¼ 80 × 80, FOV ¼
25.6 × 25.6 mm2, in plane resolution 0.32 × 0.32 mm, bandwidth ¼ 250 kHz). Both fMRI
scans were acquired with the same image slice geometry imported from the previously acquired
T2-weighted anatomical image. For CBV fMRI, a session of GE-EPI scans with 300 repetitions
was taken, and at about the 100th scan, Feraheme (30 mg Fe/kg, i.v.) was administered for CBV
percentage change calculations. This data contains the original brain contrast in the first 100
scans before the Feraheme injected, resulting a mean cortical SNR of the averaged first 100
scans as 396.72� 30.84. This allows quantification of signal changes caused by the contrast
agent and therefore enable calculation of CBV changes (see details in Sec. 2.6). For forepaw
stimulation fMRI, a monophasic constant current of 2.5-mA intensity with a 0.5-ms pulse width
at a frequency of 9 Hz was applied, and two stimulation paradigms were used in this study:
block-design (60 s-off, 10 s-on, 60 s-off, 10 s-on, 60 s-off) and event-related (10 s-off, 1 s-on,
39 s-off, 1 s-on, 39 s-off, 1 s-on, 39 s-off). For resting-fMRI, 600 repetitions (10 min) were
scanned as a previous study showed that the reliability of resting-fMRI connectivity estimates
reached a plateau in about 9 to 16 min.55

At the end of fMRI experiment, the rat was recovered from anesthesia and paralysis by
receiving atipamezole hydrochloride (3 mg∕kg, i.v.; ANTISEDAN, Orion, Espoo, Finland), for
the reversal of the sedative and analgesic effects of dexmedetomidine, and sugammadex sodium
(4 to 8 mg∕kg, i.v.; Merck Sharp & Dohme Corp., Kenilworth, New Jersey), for the reversal of
the paralytic effect of rocuronium.54

2.6 CBV fMRI Data Processing and Statistical Analyses

All fMRI data were analyzed using the analysis of functional neuroimages (AFNI)5 GLM
framework.6 All EPI images were skull-stripped56 and slice-timing was corrected. Then auto-
matic co-registration was applied to realign time-courses data within subjects to correct subtle
drift of EPI images. In addition, the resting-state fMRI images were then linearly detrended,
high-pass filtered (>0.01 Hz), independent component analysis (ICA) denoise, and head move-
ment regression. The high-pass filter was chosen to retain high frequency power (i.e., >0.1 Hz)
and to remove noise generated from respiration and heart rate without significant loss of pur-
ported neuronal-based signal.57,58 ICA denoise was used to identify and remove physiological,
movement and thermal (machine) noise components.59 Finally all EPI images were aligned to a
T2-weighted rat brain template7 to generate normalized fMRI images to allow for group-level
comparisons, and Gaussian smooth (FWHM ¼ 0.6 mm) was performed. To test the group-level
significant consistency of the stimulus-evoked responses, we employed a parametric one-sample
t-test implemented in AFNI. The significant threshold was set to pcorrected < 0.05 (corrected by
3dClustSim). A region of interest (ROI) of ball with diameter (r ¼ 1.2 mm, 16 voxels) was
placed at the fiber tip in the S1 to extract fMRI time-course data. To account for Feraheme
kinetics over the course of experiments, the following equations were used to calculate the
ΔR�

2ðbaselineÞ, ΔR�
2ðstimÞ, and ΔCBV.8

EQ-TARGET;temp:intralink-;e001;116;254ΔR�
2ðbaselineÞ ¼ −

1

TE
ln

�
Sprestim

S0

�
; (1)

EQ-TARGET;temp:intralink-;e002;116;197ΔR�
2ðstimÞ ¼ −

1

TE
ln

�
Sstim
Sprestim

�
; (2)

EQ-TARGET;temp:intralink-;e003;116;160ΔCBV ¼ ΔR�
2ðstimÞ

ΔR�
2ðbaselineÞ

; (3)

where Sprestim and S0 represents MR signal intensity after and before Feraheme injection, respec-
tively, and Sstim are the MR signal intensities during the stimulation. The brain activation map in
Fig. 5 used GCaMP time-course or stimulation paradigm convolved with empirical or canonical
HRF as regressor for GLM analysis of fMRI during forepaw stimulation, Fig. 6 used GCaMP
time-course convolved with empirical or canonical HRF as regressor for GLM analysis of resting
data, and others are the common GLM analysis based on the stimulation paradigm.
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2.7 Fiber-Photometry Spectral Unmixing

To untangle the GCaMP and Rhodamine spectra, mixed spectra acquired by fiber-photometry
were analyzed using a spectral linear unmixing algorithm, which can effectively remove cross-
talk between multicolor sensors as shown in previous studies.42,43,49 Briefly, at any time point n,
the mixed spectrum YðnÞ was modeled as

EQ-TARGET;temp:intralink-;e004;116;668YðnÞ ¼ Coff1ðnÞ × S1 þ Coff2ðnÞ × S2 þ Cþ εðnÞ; (4)

where S1 and S2 are the normalized reference emission spectra of the two fluorescence signal
sources. Coff1 and Coff2 are the unknown regression coefficients corresponding to the S1 and S2
respectively. C is the unknown constant, and εðnÞ is random error. Coff1ðnÞ, Coff2ðnÞ, and
εðnÞ at each time point were estimated using the lm() function in the RStudio package (RStudio
Inc. V1.0.136, Boston, Massachusetts).

2.8 Modeling the Hemodynamic Response Function

The relationship between neuronal activity and hemodynamic response can be expressed as:

EQ-TARGET;temp:intralink-;e005;116;529HbTðTÞ ¼ NðTÞ ⊗ HRFðtÞ þ cþ dðTÞ; (5)

where theHbTðTÞ represents hemoglobin fluctuation time-course, the NðTÞ represents neuronal
activity time-course, the HRFðtÞ represents an impulse HRF with t sampling points, c is a con-
stant for baseline offset, and dðTÞ is for linear drift over time. Assuming T ¼ f0; 1; 2; : : : ; mg,
t ¼ f0; 1; 2; : : : ; ng, this equation can be expressed as

EQ-TARGET;temp:intralink-;e006;116;450

2
6666664

HbTð0Þ
HbTð1Þ
HbTð2Þ

..

.

HbTðmÞ

3
7777775
¼

2
6666664

Nð0Þ 0 0 0 1 0

Nð1Þ Nð0Þ 0 · · · 0 1 1
m

Nð2Þ Nð1Þ Nð0Þ 0 1 2
m

..

. . .
. ..

.

NðmÞ Nðm − 1Þ Nðm − 2 · · · Nðm − nÞ 1 1

3
7777775
×

2
66666666664

HRFð0Þ
HRFð1Þ
HRFð2Þ

..

.

HRFðnÞ
c
D

3
77777777775
(6)

Therefore, the HRFðtÞ, c and D (slope of dðTÞ) can be solved using Ordinary Least Squares
solution with known HbTðTÞ and NðTÞ. According to our experience, we recommend starting
with >1600 sampling points for m and ∼250 sampling points for n when a 10 Hz sampling rate
is used. To avoid slow nonlinear drift and physiological noise contamination, HbTðTÞ were
band-pass filtered with cutoff frequencies at 0.01 and 0.5 Hz before the HRF estimation.

2.9 Histology

At the end of the experiments, rats were euthanized by a mixture of 1 to 2 ml of sodium pen-
tobarbital and phenytoin sodium (Euthasol, Virbac AH, Inc., Westlake, Texas), and trans-
cardially perfused with saline followed by 10% formalin. The brains were removed and stored
in 10% formalin overnight, then transferred into a 30% sucrose solution (in 0.1 M phosphate
buffer) for 2 to 3 days, until brains sunk to bottom of storage bottles. These brains were cut into
serial coronal sections (40 μm) using a cryotome (#HM450, Thermo Fisher Scientific, Waltham,
Massachusetts) and mounted on glass slides. Fluoro-Gel II Mounting Medium (#17985-50,
Electron Microscopy Sciences, Hatfield, Pennsylvania) was covered on the brain slides to
provide DAPI stain and for fluorescence imaging. Slides were imaged using a Zeiss LSM780
confocal microscope.
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2.10 Statistical Analysis

All data are expressed as the mean ± standard error. A P value of <0.05 was considered sta-
tistically significant. Differences between empirical HRF and canonical HRF were compared by
conducting an independent two-sample t test. The CNR among GCaMP6f signal, photometry-
CBVand fMRI-CBV were compared through one-way repeated measures ANOVA and Tukey’s
post hoc multiple comparison.

3 Results

Our concurrent fiber-photometry and fMRI recording platform is shown in Fig. 1(a). We used an
AAV vector to express GCaMP6f in S1 under the CaMKIIα promotor for neuronal activity meas-
urement [Fig. 1(b)] and injected a single bolus of Dextran conjugated Rhodamine B (70,000
molecular weight) via a tail vein catheter for CBV measurement [Fig. 1(c)]. The conjugated
Dextran group enlarges the molecular size of the Rhodamine B compound for a slower elimi-
nation rate from the blood stream and minimizes the baseline drift during CBV recording.
Figure 1(c) shows the representative mixed emission spectra of GCaMP6f and Rhodamine
B. Mixed spectra time-courses data were recorded at 10 Hz sampling rate, then linearly unmixed
offline to derive their coefficients for quantification. Rhodamine B spectral peak signal intensity
is dose-dependent [Fig. 1(d)] and is directly related to the signal-to-noise ratio of the photometry-
CBV measurement [Fig. 1(e)]. This information allows us to calculate the minimum baseline
Rhodamine B signal required to detect CBV changes of various magnitudes [Fig. 1(f)]. We use
the spectral peak photon count as the unit shown in Figs. 1(d)–1(f) because it can be easily
monitored in real time during the preparation for photometry-CBV recording. The baseline sig-
nal decay curve following Rhodamine B bolus injection indicates that roughly 30 min are needed
for the signal to reach a steady state [Fig. 1(g)]. Simultaneous multimodal fiber-photometry and
fMRI recordings of S1 (Video 1), aligned to electrical forepaw stimulation, showed similar
activation patterns of photometry-CBV and fMRI-CBV, concurrent with a robust increase in
GCaMP6f neuronal signal, and notably, photometry-CBV had significantly higher CNR than
fMRI-CBV [Figs. 1(i)–1(k)]. In addition, fMRI provided brain-wide CBV activation maps
[Fig. 1(h)].

Having established our fiber-photometry platform for multimodal recording of neuronal
activity and CBV, we sought to determine whether these signals could be readily used to cal-
culate accurate HRFs from resting-state data in the absence of external stimuli. Because we can
directly measure spontaneous neuronal activity via the GCaMP6f signal, no stimulation or other
timestamped external events should be required to compute HRFs. Figure 2(a) shows the pipe-
line that we used to derive a HRF from spontaneous GCaMP6f and photometry-CBV signals
recorded in S1. The GCaMP6f signal was detrended by high-pass filtering 0.01 Hz, and the
photometry-CBV signal was band-pass filtered between 0.01 and 1 Hz to remove low-frequency
drift and high-frequency physiological noise. Next, we selected an independent GcAMP6f and
photometry-CBV dataset from S1, then calculated the predicted CBV response (black trace) by
convolving the independent GCaMP6f trace (green trace) with the HRF model derived using the
steps in Fig. 2(a). Importantly, there was a high degree of agreement between the measured
photometry-CBV (red trace) and the predicted CBV resting-state signals, confirming the accu-
racy of the calculated HRF [Fig. 2(b)]. To further optimize our platform and demonstrate the
robustness of our pipeline, we empirically determined the resting-state data length required to
derive a stable HRF. We used different lengths of simultaneously recorded GCaMP6f and pho-
tometry-CBV time-courses to calculate HRFs and their respective noise levels, and found that
HRFs are most stable when the input data-length is longer than ∼3 min (Fig. 3, Video 2).

Next, we compared rat S1 HRFs derived from photometry-CBV and fMRI-CBV signal
changes aligned to electrical forepaw stimulation to cross-validate the two approaches, thereby
highlighting the potential utility of photometry-derived HRFs for fMRI applications [Figs. 4(a)–
4(c)]. Because the fMRI sampling rate was 1 Hz, we interpolated the fMRI-CBV time-courses to
10 Hz to match the temporal resolution of the GCaMP6f and photometry-CBV signals. As
expected, photometry-CBV and fMRI-CBV signals were also significantly correlated over time
[Fig. 4(b)]. Most importantly, we found minimal differences between HRFs derived from
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Fig. 1 (a) The setup of the spectral fiber-photometry platform synchronized with a 9.4T small ani-
mal MRI system. 488- and 561-nm laser light is combined and delivered to the rat brain through a
fiber optic cable connected to an implanted optical fiber. Fluorescence emission signal returns
through the same cable, then is delivered to a spectrometer for recording, which is synchronized
in time to 1 Hz fMRI acquisition by TTL pulses, upsampled to 10 Hz through an Arduino board. The
stimulation system for electrical forepaw stimulation is also synchronized to fMRI acquisition and is
controlled by a separate PC with a DAQ board. (b) GCaMP6f is expressed via microinjection of
genetically engineered AAV into the target brain area. An optical fiber is implanted 0.3 mm above
the injection site. The GCaMP6f emission wavelength has a peak at 515 nm. (c) To monitor CBV
activity with photometry, Rhodamine B is injected via tail vein catheter. GCaMP6f and Rhodamine
B spectra are unmixed to derive their coefficients for quantification. (d) Multi-dose test revealed
that Rhodamine B spectral peak photon counts are linearly correlated with Rhodamine B injection
dose (mg/kg). (e) The SNR and spectral peak photon counts of Rhodamine B recordings are lin-
early correlated. (f) Rhodamine B photon counts needed for detecting CBV changes of various
magnitudes at different statistical thresholds. (g) The half-life of Rhodamine B clearance following
bolus injection is measured at 698.3 s. (h) fMRI-CBV response maps to the electrical forepaw
stimulation paradigm consisting of a 60 s initial baseline period followed by two sets of 10 s elec-
trical forepaw stimulation blocks (9 Hz, 2.5 mA, 0.5 ms) with 60 s resting periods after each block.
(i) Time-courses of GCaMP6f (green), photometry-CBV (red) and fMRI-CBV (black) from S1,
aligned to electrical forepaw stimulation. (j) Photometry-CBV has higher CNR than fMRI-CBV
(p < 0.01), and GCaMP shows the highest CNR. The CNR is calculated by dividing the evoked
response peak value with the standard deviation of baseline fluctuation (GCaMP: 25.36� 5.31,
Rhodamine-CBV: 7.93� 1.4, fMRI-CBV: 6.18� 0.74). (k) Photometry-CBV and fMRI-CBV peak
response amplitudes to electrical forepaw stimulation are linearly correlated. Demo of simultane-
ous multimodal fiber-photometry and fMRI recordings in S1 (Video 1, MOV, 8 MB [URL: https://doi
.org/10.1117/1.NPh.9.3.032205.1]).
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photometry-CBVand fMRI-CBV [ICC ¼ 0.99, Fig. 4(c)]. Further, convolution of the measured
GCaMP6f signal from a representative independent GCaMP6f, photometry-CBV, and fMRI-
CBV dataset [Fig. 4(d)] and either the photometry-CBVor fMRI-CBV derived HRF [Fig. 4(c)]
both produced a predicted-CBV time-course that was well correlated with the corresponding

Fig. 3 Optimization of the data length of GCaMP6f and photometry-CBV time-courses for calcu-
lating HRFs. (a) The resulting HRFs upon regression with different length (s) of GCaMP and CBV
time-course. (b) High-frequency white noise (>0.1 Hz) is reduced to a steady-state when the train-
ing data are longer than ∼160 s (5 times the decay time constant). We defined the signals >0.1 Hz
as noise because hemodynamic activity is commonly considered to be between 0.01-0.1 Hz.
Optimization of the data length of GCaMP6f and photometry-CBV time-courses for calculating
HRFs (Video 2, MP4, 6 MB [URL: https://doi.org/10.1117/1.NPh.9.3.032205.2]).

Fig. 2 A HRF derived from GCaMP6f and Rhodamine B signals in rat S1 has good predictability
for S1 photometry-CBV changes. (a) The pipeline to calculate HRFs from simultaneously recorded
GCaMP6f (green) and photometry-CBV (red) time-course. (b) An example of predicted-CBV activ-
ity (black) calculated by convolving the derived HRF [shown in (a)] with an independent GCaMP6f
time-course (green), the predicted-CBV activity shows a high degree of correlation over time (cor-
relation sliding window width = 5 s) with the corresponding, independently measured, photometry-
CBV activity (red). Note that sometimes we observed flipping correlations between positive and
negative. Specifically, this instability happened when there was relatively weak neuronal activity
within the sliding window, where the CBV changes could be so subtle and buried under random
noises. Therefore, the sliding window correlations during weak neuronal activity could be randomly
positive or negative.
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measured CBV time-course [Figs. 4(e) and 4(f)]. In addition, to understand how much the
resolved HRF is influenced by potential neuronal habituation due to repetitive electrical forepaw
stimulation, we evaluate the similarity among the HRFs derived using the first, second, and both
stimulation blocks [Fig. 4(a)], and found excellent agreement among these three HRFs
[ICC ¼ 0.95, Fig. 4(h)]. Similarly, the HRFs obtained from block-design [Fig. 4(a)] and
event-related [Fig. 4(g)] forepaw stimulation also showed excellent agreement to each other
[ICC ¼ 0.82, Fig. 4(i)].

An important metric for the utility of empirical HRFs is their performance relative to the
canonical HRF in capturing whole-brain activity changes within fMRI datasets. Notably, the
empirical HRF from rat S1 photometry-CBV data in Fig. 4(c) was narrower in appearance than
the canonical HRF, with a significantly shorter time to peak [Figs. 5(a)–5(b)]. To understand how
these differences between the fiber-photometry derived empirical HRF and the canonical HRF

Fig. 4 Cross-validation of HRFs derived from photometry-CBV and fMRI-CBV signal changes, or
using different stimulation paradigms (n ¼ 4). (a) Simultaneously measured fMRI-CBV (blue),
photometry-CBV (red) and GCaMP6f (green) time-courses from rat S1, aligned to block-design
electrical forepaw stimulation paradigm (gray). (b) Photometry-CBV and fMRI-CBV signals from
S1 during blocks of electrical forepaw stimulation are highly correlated (CBV time-courses from the
four rats, two repetitions, are all normalized to individual maximum then pooled together).
(c) Excellent agreement (ICC ¼ 0.99) was identified between the HRFs derived using fMRI-
CBV (blue) and photometry-CBV (red). (d) Representative simultaneously measured fMRI-
CBV (blue), photometry-CBV (red), and GCaMP6f (green) time-courses from rat S1, aligned to
blocks of electrical forepaw stimulation. It should be noted that GCaMP signal drop below baseline
after stimulation, likely due to hemoglobin absorption.27,28,43 The predicted-CBV time-course
(black) calculated by convolving the GCaMP6f time-course with the photometry-CBV HRF (c),
red is also shown. (e) The predicted-CBV via GCaMP6f time-course and the photometry-CBV
HRF has a high correlation with the corresponding photometry-CBV time-course from the same
independent dataset. (f) The predicted-CBV time-course calculated by convolving the GCaMP6f
time-course with the fMRI-CBV HRF (c), blue also has a high correlation with the corresponding
fMRI-CBV time-course from the same independent dataset. The CBV fluctuation around zero,
might be due to spontaneous hemodynamic fluctuations by non-neural processes as described
in the previous study.60 (g) Simultaneously measured fMRI-CBV (blue), photometry-CBV (red) and
GCaMP6f (green) time-courses from rat S1, aligned to event-related forepaw stimulation paradigm
(gray). (h) Excellent agreement (ICC ¼ 0.95) was identified between the HRFs derived using the
photometry signals recorded during both blocks (0 to 200 s), first block (31-100 s), and second
block (101-170 s) in (a). (i) Good agreement (ICC ¼ 0.82) was identified between the HRFs
derived using the photometry signals of block-design (a) and event-related (g) stimulation para-
digm. In all figures, the shaded area represents standard error. ICC agreement guideline given by
Koo and Li (2016):61 below 0.50 = poor, between 0.50 and 0.75 = moderate, between 0.75 and
0.90 = good, above 0.90 = excellent.
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could impact fMRI analyses, we compared their performance in calculating forepaw stimulation-
induced brain activation maps. We first convolved the stimulation paradigm to each HRF, then
used the products as regressors for GLM analyses of fMRI data. We found that the group-level
statistical map for brain activation calculated with the empirical HRF detected a larger activation
cluster in S1 [Fig. 5(c) left, 240 voxels] compared to the map derived using the canonical HRF
[Fig. 5(c), right, 161 voxels]. Further, there was a higher correlation between the regressor cal-
culated using the empirical HRF than with the canonical HRF and the corresponding S1 fMRI-
CBV changes over time [Fig. 5(d)]. Next, we repeated the same analyses, but generated the
regressors by convolving the HRFs with GCaMP6f signals instead of the stimulation paradigm.
In contrast to the previous analyses, this approach produced one unique regressor for each
recorded stimulation trial according to the measured GCaMP6f neuronal activity. In result,
we observed significant S1 activation clusters using both HRFs as before, with an additional
activation cluster unique to the empirical HRF analysis that was located in the bilateral post
parietal cortices (PPC), which receives substantial inputs from the S1 forelimb area62

[Fig. 5(e)]. Additionally, similar to the previous results [Figs. 5(c)–5(d)], analysis with empirical
HRF detected a larger S1 activation cluster [Fig. 5(e) left, 289 voxels] in the group-level stat-
istical brain activation map compared to the canonical HRF [Fig. 5(e) right, 149 voxels], and the
empirical HRF derived regressor also showed higher correlation with the corresponding S1
fMRI-CBV measurements [Fig. 5(f)].

One unique advantage of fiber-photometry over other optical techniques is that HRFs can be
probed at deep brain regions because there is no tissue-depth limitation to the signals received.
To illustrate this application, we provide an example of a HRF derived from spontaneous
GCaMP6f and photometry-CBV signals in the PrL, where the targeted site was 3.5-mm deep
from brain surface in rats [Figs. 6(a) and 6(b)]. By convolving the empirical photometry-derived

Fig. 5 Using the fiber-photometry derived empirical HRF for fMRI analyses improved detection of
S1 activation clusters and downstream activity compared to analyses using the canonical HRF.
(a) The rat S1 empirical HRF (blue, the shaded area represents standard error) derived using S1
GCaMP and photometry-CBV signals was substantially narrower than the human-based canoni-
cal HRF (black dashed line), which is implemented in the SPM package for brain data analysis by
default.11 (b) The time-to-peak of the empirical HRF was significantly shorter than the canonical
HRF (p < 0.001). (c) The detected S1 activation cluster size was larger when the stimulation para-
digm was convolved with the empirical HRF than with the canonical HRF for GLM analysis of the
fMRI data (p < 0.05corrected). (d) The correlation between the regressor-generated CBV time-
course and the fMRI-CBV time-course measured from the corresponding S1 activation cluster
was significantly higher when using the empirical HRF versus the canonical HRF for regressor
calculation. The correlations were Fisher transformed to meet the requirement as normal distri-
bution for Student T-test and shown in arctanh(r), p < 0.001. (e) A significant activation cluster was
detected in bilateral PPC by convolving the GCaMP6f signal with the empirical HRF but not the
canonical HRF (p < 0.05corrected). (f) The correlation between the regressor-generated CBV time-
course and the fMRI-CBV time-course measured from the corresponding S1 activation cluster was
significantly higher when using the empirical HRF and GCaMP6f signal versus the canonical HRF
and GCaMP6f for regressor calculation The correlations were Fisher transformed to meet the
requirement as normal distribution for Student T-test and shown in arctanh(r), p < 0.001.
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HRF with the PrL GCaMP signal to use as a regressor in GLM analysis of simultaneously
acquired fMRI data, we were able to extract brain regions related to the default mode network
(DMN), such as RSC, as well as regions functionally connected to the PrL [Fig. 6(d), left].
However, when using the canonical HRF for regressor calculation, the DMN-like pattern failed
to be extracted via the same process [Fig. 6(d), right].

As it has been postulated that HRFs can be region-specific, we repeated the previous experi-
ment with fiber-photometry recordings from three more cortical areas in the rat brain, including:
the ACC, the RSC, and the AI. For each, the empirical HRF performed better in the fMRI GLM
analysis than the canonical HRF, with DMN-like patterns from the ACC and RSC HRFs
[Figs. 6(e)–6(l)], we found a distinct pattern from the AI HRF [Figs. 6(m)–6(p)], and no pattern
from the canonical HRF [Figs. 6(e)–6(p)]. Similar to the empirical HRF derived from S1 pho-
tometry data displayed in Fig. 5(a), the empirical HRFs for the four additional cortical areas
reported in Fig. 6 also exhibited a significantly shorter time-to-peak latency than the canonical
HRF [Figs. 6(b) and 6(c), 6(f) and 6(g), 6(j) and 6(k), and 6(n) and 6(o)]. Specifically, in contrast
to the typical 5-s time-to-peak latency of the canonical HRF,63,64 the time-to-peak latencies
for the empirical HRFs were as follows: S1 ¼ 2.2� 0.23 s, PrL ¼ 1.88� 0.09 s, ACC ¼
2.42� 0.29 s, RSC ¼ 2.45� 0.29 s, and AI ¼ 2.22� 0.29 s. Intriguingly, among these empir-
ically measured HRFs from rat cortical regions, no significant difference was identified using the
functional t-test (a statistical test developed for comparing HRFs,19 which uses a pointwise test
approach based on a permutation method) (p ¼ 0:66). We further evaluated the similarity among
these empirical HRFs using ICC61 and found excellent agreement (ICC ¼ 0.95) among these

Fig. 6 (a, e, i, and m) Fiber-photometry recording sites in rat cortical areas used for calculating
empirical HRFs. Each rat was implanted fibers in PrL, ACC, RSC, and AI (n ¼ 10, each rat was
recorded two repetitions of 10 min resting-state). (b, f, j, n) The empirical HRFs derived resting-
state GCaMP6f and Rhodamine B time-course data recorded by fiber-photometry (blue solid line,
the shaded area represents standard error) versus the canonical HRF (black dashed line). (c, g, k,
o) The time-to-peak differences of the empirical HRFs versus canonical HRF (Δ time-to-peak);
negative values indicate time-to-peak latencies shorter than the canonical HRF (all p < 0.001).
(d, h, l, p) GLM analyses of fMRI data using spontaneous GCaMP6f signals convolved with the
empirical HRFs as regressors detected brain-wide functional networks (left panels), which could
not be detected using the same GCaMP6f signals convolved with the canonical HRF as regres-
sors (right panels) (p < 0.05corrected, n ¼ 7). Note that the GLM coefficients below each optic fiber
targeting site were not the strongest among the whole functional networks (left panels). It is likely
due to confounds associated with fiber implantation and/or susceptibility effect cause by fiber,
which is commonly observed in fMRI studies with optic fiber implant.44–46
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empirical HRFs. Given the similarity between empirical HRFs for rat cortical regions, we pooled
these five HRFs together to generate an average rat cortical HRF (Table 1) for straightforward
dissemination. The average rat cortical HRF had a time-to-peak latency of 2.23� 0.11 s, and a
FWHM of 1.7� 0.15 s, which is significantly faster and narrower than the canonical HRF with a
5 s time-to-peak and a 5.3 s FWHM, respectively (Fig. 7).

4 Discussion

fMRI studies in rodents provide a unique opportunity to selectively interrogate and monitor
large-scale activity changes, which is otherwise challenging to accomplish in humans.65

While emerging evidence shows that neurovascular coupling can be substantially different
across species, brain regions, and neurophysiological conditions,5,6 a canonical human HRF
is still used in a majority of rodent studies. Current attempts to calculate empirical HRFs from
multi-modal measurement-based approaches are limited either by fMRI-compatibility issues
(e.g., electrophysiology20–25), or by signal loss through brain tissue (e.g., multi-photon
microscopy26,29–33 and wide-field optical imaging27,28), whereas fMRI data-driven approaches
are heavily influenced by model selection.15–19 In this study, we addressed these limitations
by implementing a fMRI-compatible spectral fiber-photometry platform, which allows for
simultaneous optical ground-truth measurement of neuronal activity and CBV changes from
any target in the brain. Our results demonstrated that data from this platform can be used to
calculate empirical HRFs with a standard pipeline and with sufficient efficiency to use
resting-state datasets without discrete stimulation events [Figs. 2, 3, 6, S1 (Video 1), and
Video 2]. Further, we revealed that empirical HRFs derived from our platform consistently
outperform the canonical HRF in GLM analyses of simultaneously acquired rat brain fMRI
data.

Our results indicate that while empirical HRFs from rat cortical areas, including the S1, PrL,
ACC, RSC, and AI are generally similar. Nevertheless, it does not necessarily suggest identical
HRF should be applied across all the nuclei in the rodent brain, as shown in one of our recent
studies.66 Among the cortical HRF measured in this study, we found their time-to-peak latencies
and FWHMs are significantly shorter than the widely used canonical HRF,11 which was derived
based on the human studies by Friston and colleagues.63,64 Indeed, the peak and FWHM of our
cortical empirical HRFs are consistent with other previously reported, empirical HRFs identified
for rat S1,67,68 visual cortex,69 and olfactory bulb.34 Previous studies have suggested that the
faster dynamics of rat cortical HRFs compared to the human-derived canonical HRF may be
due to a higher CBF velocity in rodent capillary and venous structures, as well as a relatively

Fig. 7 The average empirical rat cortical HRF derived from fiber-photometry GCaMP6f and
Rhodamine B signal in rat S1, PrL, ACC, RSC, and AI is significantly faster and narrower than
the canonical HRF. (a) The average empirical rat cortical HRF (blue solid line, the shaded area
represents standard error) obtained from 44 total photometry recordings versus the canonical HRF
(black dash line). The average empirical rat cortical HRF was pooled from HRFs in S1: n ¼ 4∕2
repetitions, PrL/ACC/RSC/AI: n ¼ 10∕2 repetitions. In addition to the S1 HRF, the HRFs of PrL,
ACC, RSC, and AI were computed from the same group of animals using a four-channel recording
system. The intraindividual HRFs were first averaged, then these average individual HRFs were
used to calculate the average empirical rat cortical HRF. (b) The difference in shape between the
empirical HRFs for individual cortical areas (colored solid lines) appears to be substantially smaller
than between each HRF and the canonical HRF (black dashed line). (c) The time-to-peak laten-
cies of the empirical HRFs are significantly shorter than the canonical HRF (p < 0.001). (d) The
FWHMs of the empirical HRFs are significantly narrower than the canonical HRF (p < 0.001).
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Table 1 The average empirical rat cortical HRF derived
from fiber-photometry GCaMP6f and Rhodamine B signal
in rat S1, PrL, ACC, RSC, and AI.

Time (s) Empirical HRF

0 0.000

0.1 −0.001

0.2 −0.012

0.3 −0.026

0.4 −0.039

0.5 −0.045

0.6 −0.023

0.7 0.050

0.8 0.069

0.9 0.117

1 0.184

1.1 0.250

1.2 0.356

1.3 0.485

1.4 0.624

1.5 0.761

1.6 0.870

1.7 0.948

1.8 0.995

1.9 1.000

2 0.979

2.1 0.940

2.2 0.889

2.3 0.844

2.4 0.792

2.5 0.739

2.6 0.658

2.7 0.588

2.8 0.524

2.9 0.438

3 0.363

3.1 0.284
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Table 1 (Continued).

Time (s) Empirical HRF

3.2 0.221

3.3 0.150

3.4 0.098

3.5 0.042

3.6 −0.009

3.7 −0.048

3.8 -0.088

3.9 −0.140

4 −0.182

4.1 −0.232

4.2 −0.268

4.3 −0.294

4.4 −0.322

4.5 −0.323

4.6 −0.335

4.7 −0.338

4.8 −0.340

4.9 −0.345

5 −0.343

5.1 −0.339

5.2 −0.340

5.3 −0.330

5.4 −0.313

5.5 −0.294

5.6 −0.276

5.7 −0.252

5.8 −0.225

5.9 −0.210

6 −0.184

6.1 −0.167

6.2 −0.151

6.3 −0.139

6.4 −0.122
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larger contribution of large vessel effects to the signal.67,68 It is important to note that the current
study utilized CBV-fMRI to match with photometry CBV recording, and a kinetic difference
may exist between the canonical BOLD-derived HRF.63,64 Nevertheless, a recent study by Peng
et al.12 demonstrated that fMRI detection performance between CBV-based or BOLD-based
HRFs are not significantly different. It has also been reported that differences in time-to-peak
estimate might have to be on the order of 2.5 s to cause false negative findings.7 Furthermore,
studies comparing empirical BOLD and CBV HRFs have only reported relatively small
differences in shape and timing compared to those observed here.67,70,71 Indeed, our results from
a subset of experiments using BOLD measures are in agreement with these findings and show
minimal discrepancies between BOLD- and CBV-derived HRF (Fig. 8). Notably, we identified
the time-to-peak of our empirical HRFs to be ∼2.8 s earlier than that of the canonical HRF
(Fig. 7). This misprediction will cause dramatically lower detection performance of fMRI
changes by GLM analyses using canonical rather than empirical HRF-derived regressors, as

Table 1 (Continued).

Time (s) Empirical HRF

6.5 −0.120

6.6 −0.115

6.7 −0.112

6.8 −0.110

6.9 −0.102

7 −0.103

7.1 −0.097

7.2 −0.099

7.3 −0.083

7.4 −0.074

7.5 −0.069

7.6 −0.056

7.7 −0.054

7.8 −0.048

7.9 −0.024

8 0.000

Fig. 8 The CBV-based and BOLD-based HRFs, derived using block-design forepaw stimulation
data, showed excellent agreement with each other (ICC ¼ 0.95, n ¼ 4).
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demonstrated by the relatively smaller S1 activation cluster sizes from electrical forepaw stimu-
lation or related GCaMP time-courses in Fig. 5 and complete absence of detected features from
resting-state data in Fig. 6. Similarly, use of inaccurate HRFs may also substantially impact
DCM72 and granger causality73 results in fMRI data analysis.

Our empirical HRFs are generally consistent with previously reported rat HRFs.34,67–69

However, it should be noted that the HRFs presented herein represent vascular transfer functions
of GCaMP6f activity rather than canonical impulse-response functions where the ”impulse” is
supposed to be brief and nearly instantaneous (e.g., spiking or neurons). As GCaMP inherently
has delayed response kinetics relative to neuronal spiking activity,14 one could assume this offset
may contributes to the shorter time-to-peak latency of our empirical HRFs compared to the
canonical HRF as shown in Fig. 7. Nevertheless, in vivo evidence using GCaMP6f, the variant
employed in this study, shows the time-to-peak to be only 40 ms following neuronal spiking
events,14 whereas the time-to-peak difference between the average of our empirical HRFs and the
canonical HRF was ∼2.8 s (Fig. 7). Therefore, the contribution of GCaMP6f kinetics and cal-
cium dynamics to our empirical HRFs, while present, is thought to be insignificant to the hemo-
dynamic time-scale. Indeed, the HRF derived from evoked GCaMP6f activity and stimulation
paradigm showed minimal differences between each other (Fig. 9).

As the proposed empirical HRFs are derived using GCaMP6f signals, it is expected that
regressors generated by convolving GCaMP6f signals with their corresponding empirical
HRFs would perform better than regressors generated by convolving GCaMP6f signals and the
canonical HRF. Indeed, in Fig. 5, we demonstrate that out of the possible combinations of either
the GCaMP6f signals or the stimulation paradigm and the S1 empirical HRF or the canonical
HRF for regressor calculation, only the GCaMP6f and empirical HRF combination captured
PPC activation in the simultaneously acquired fMRI data. Given that the PPC receives substan-
tial inputs from the S1 forelimb area,62 and GCaMP6f is thought to measure neuronal output
activity,74 GCaMP6f and empirical HRF-derived regressors may prove particularly useful for
reliable extraction of downstream activity changes from targeted efferent neuron populations.
Nevertheless, our results also suggest better detection performance in fMRI data when using
the stimulation paradigm and S1 empirical HRF rather than the canonical HRF in regressor
calculation. Taken together, these findings suggest that empirical HRFs derived from concur-
rently measured neuronal activity and CBV changes may be more accurate for analyzing rat
fMRI data than using the human-based canonical HRF.

Previous studies have shown that HRFs can vary across brain regions in both humans7 and
rodents.8 While we did not identify any significant differences in empirical HRFs across five
cortical regions in the rat brain (i.e., S1, PrL, ACC, RSC, and AI), future investigations of sub-
cortical regions, which can be readily probed with our platform, may yield divergent results. For
example, negative, rather than positive vascular responses to increased neuronal activity have
been reported in the hippocampus,75 caudate-putamen,6,43,76,77 and different hemodynamic prop-
erties between cortical and subcortical brain regions have also been reported in the rat visual
system.78 However, it should be noted that the aforementioned studies utilized altered physio-
logical states or external stimulations to characterize the regional neurovascular relationships,
and these relationships may be different under resting-state conditions. In support, altered vas-
cular responses have been observed in several disease states,77,79,80 and in response to stress,81

pain,8 or anesthesia,82 and many studies have also shown non-linear coupling between sensory
stimulation frequencies and hemodynamic responses.5,69,83–87 Furthermore, there are known

Fig. 9 Excellent agreement (ICC ¼ 0.94) was identified between the HRFs derived using
GCaMP6f (green) and stimulation paradigm (gray).
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interactions between neurophysiological conditions and neuronal responses to sensory
stimulations.9,10 Namely, neural adaptations during prolonged stimulations can vary according
to the stimulation frequencies and the anesthetics being used.84,88 Our fiber-photometry platform
is well-suited for clarifying HRF differences across brain regions and conditions. With the option
to efficiently derive empirical HRFs from resting-state data, potential confounds related to sen-
sory or external stimulation and physiological state-changes can be avoided with the use of our
platform. Alternatively, because our platform simultaneously measures local neuronal activity
and CBV changes, alterations in stimulation-responses or neurophysiological state can be
detected for removal or further examination in HRF calculations (Fig. 10). In addition, our plat-
form allows computing empirical HRF in awake, freely moving rodents. This might be particu-
larly useful in awake-rodent-fMRI studies, where the HRF is likely to differ from anesthetized
condition82 and stimulation-based HRF calibration might be unfeasible.

The fiber-photometry platform characterized in this study allows for the simultaneous
collection of GCaMP6f green-fluorescent neuronal activity signals and Rhodamine B red-
fluorescent CBV change signals from a single implanted optical fiber. Traditional fiber-
photometry platforms rely on single-point fluorescence intensity measurements via photodiodes
and do not provide sufficient information to fully separate independent signals with partially
overlapping spectra. Therefore, to record neuronal activity and CBV changes with the accuracy
needed for HRF calculations, our platform instead uses a spectrometer recording device to
capture the entire fluorescence emission spectrum, allowing us to separate distinct signals via
linear-unmixing. Importantly, while we focus primarily on calculating empirical HRFs from
GCaMP and photometry-CBV, it is worth mentioning that this approach can be adapted and
scaled to concurrently measure signal with distinct spectra from a variety of fluorescent sources.
As such, future investigations with our platform could leverage the rapidly expanding library
of genetically encoded neuronal activity and/or neurochemical sensors to shed important light
on how selected activity modulates vascular tone. To this end, the deconvolution pipeline
proposed herein is capable of calculating HRF using other fluorescent sensor activities such

Fig. 10 Our technique provides an opportunity to address the hypothesis that HRFs are state
dependent. Here, we used AAV vectors to co-express hM3Dq and GCaMP6f in rat S1 under the
CaMKIIα promotor. (a) GcAMP6f combined with Rhodamine B injection enabled simultaneous
measurement of neuronal activity and photometry-CBV, respectively, while hM3Dq activation
by clozapine (0.05 mg∕kg, i.v.) allowed the induction of an up-regulated state of local neuronal
activity. (b) Histological evidence of colocalized expression of GCaMP6f and hM3Dq in S1 prin-
cipal neurons. (c) Clozapine enhanced S1 GCaMP6f signal and caused a robust increase in S1
photometry-CBV. Note that clozapine is also an antipsychotic drug, yet used here to activate the
hM3Dq receptors.89 (d) Importantly, an empirical HRF calculated from spontaneous resting-state
activity time-courses from S1 after clozapine injection was significantly attenuated compared to
an empirical HRF calculated from time-courses before clozapine injection, suggesting that HRFs
can be state dependent.
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as dopamine,90 norepinephrine,91 glutamate,92,93 GABA,94 etc. Additionally, our platform could
also be used to compute transfer functions between any combination of sensors with distinct
spectra (e.g., between neuronal activity and neurochemical release). Several red-shifted fluores-
cent sensors such as jRGECO95 and iGECI96,97 would be ideal for such applications.

5 Conclusion

We have established an fMRI-compatible, spectral, fiber-photometry platform for HRF calcu-
lation and validation. We show that empirical HRFs derived from neuronal activity and CBV
changes recorded from rat cortical areas have significantly faster kinetics than the widely used
canonical human HRF, and demonstrate superior detection performance of these empirical HRFs
over the canonical HRF in GLM analyses of rat fMRI data. HRF calculations with this platform
can be conducted from resting-state or stimulation-based recording conditions and for any target
in the brain. This platform is also readily scalable to multiple simultaneous recording sites and
adaptable for the study of transfer functions between stimulation events, neuronal activity, neuro-
transmitter release, and hemodynamic responses. Through this work, we make our fiber-
photometry platform design and data analysis pipeline publicly available, with the hope that
this information will facilitate the advancement of fiber-photometry and HRF-calculation meth-
ods and the adoption of empirical HRFs for use in future animal fMRI studies.
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