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1 Introduction

To obtain high visual quality in digital camera systems, a
high spatial resolution is required. The most direct way to
increase spatial resolution in a camera is to reduce the size
of the sensor pixel elements or to increase the chip size.
However, there are applications for which this may not be
feasible. For example, to overcome sensor noise at low expo-
sure levels, smaller pixels have to be exposed for a longer
duration. Consequently, in terms of hardware, a high spatial
resolution is in contradiction to having a high temporal res-
olution, which is a requirement for high-quality video sys-
tems. Additionally, a longer exposure duration means that
frames become susceptible to motion blur effects. Super-
resolution reconstruction (SRR), as an alternative, is a signal
processing approach to enhance spatial resolution. Multiple
low-resolution (LR) images, captured in a sequence, of the
same original scene are used to construct one high-resolution
(HR) image. A further introduction to super resolution is
given in Sec. 1.3.

Camera sensors that use a single fixed-exposure duration
for each captured image have dynamic range limitations.
This is particularly the case for compact cameras that have
a smaller pixel size. The limitation is experienced e.g., when
capturing an image of an outdoor environment on a sunny
day or an indoor scene with a window. Certain image areas
will then be overexposed or underexposed, which has a large
impact in terms of visual quality. The human visual system
(HVS) is able to perceive detailed information in bright and
dim areas simultaneously, and thus it is undesired of the cam-
era system to impose this limitation. By taking two or more
images of the same scene, using different exposure settings, a
single high dynamic range (HDR) image can be created,
which is free from saturation. Digital display devices, for
their part, also have a low dynamic range (LDR) compared
to real-world scenes. The dynamic range limitation for
display devices, however, can practically be overcome by
tonemapping HDR image information to a LDR image in
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such a way that it, to the HVS, resembles the HDR image
that it was created from.! Before proceeding to a review of
relevant literature on HDR as well as SRR, the HVS and how
light is interpreted is briefly introduced.

1.1 The Human Visual System

Understanding the main principles of the HVS is of crucial
importance to researchers in image processing. When
dealing with standard 8-bit pixel image formats, much is
abstracted into how those images are coded. For example,
in the standard red, green, and blue (RGB) color spaces,
data is coded linearly with respect to the perception of bright-
ness in the HVS. This implies that image operations or filters
naturally work as expected. Also, storage, compression or
filtering of image data in this domain makes sense, because
of the property that pixel value errors have the same percep-
tual impact across the whole range of pixel values.

Light that is incident on the camera sensor is nonlinear
with regard to the HVS in several respects. As will be pre-
sented, various camera components are designed to mimic
the HVS in order to produce an output image, which is per-
ceived to be of high fidelity. Consider a light spectrum
observed by the human eye. The incident energy is registered
by the photoreceptors of the eye, the three different types of
cone cells (corresponding to, roughly, red, green and blue
light), that are responsible for human color vision. The three
cone types each have their respective spectral responses.
Their combined spectral response can be described in
terms of grayscale vision by a single function of wavelength,
the luminous efficacy curve. For simplicity as well as to stay
within the main scope of the paper, the discussion of the
HVS is from here on reduced to grayscale vision. The lumi-
nous efficacy curve is a dimensionless function that tells
what fraction of radiant power at any given wavelength con-
tributes to the luminous properties of the HVS. It is nonzero
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for wavelengths between, roughly, 380 to 700 nm, the so-
called visible spectrum.”

The term for the incident power spectrum of light is
irradiance. The mathematical inner product of irradiance
with the luminous efficacy curve is denoted illuminance.
As opposed to irradiance, a radiometric unit, illuminance
is a term defined based on the HVS, and is thus a photometric
unit. While illuminance is the light registered by the human
photoreceptors, the cones, it is still nonlinear with respect
to perceived brightness. Illuminance changes of an absolute
measure have a much higher perceived impact at low illumi-
nance levels as compared to at high illuminance levels. Per-
ceived brightness is subjective. Based on tests of human
vision on large sample sizes, standardized units such as light-
ness and luma are defined and used in color spaces for LDR
image processing. Table 1 summarizes the terms presented in
this section and how they relate to the HVS and digital cam-
eras. An incident light spectrum, irradiance, on a camera sen-
sor is filtered according to the same principle as that of the
cones of the eye. Thus, light contributes differently, depend-
ing on its wavelength, to the amount of current that is excited
from sensor elements. The term illuminance is used here also
when referring to the sensor output due to the filtered light,
even though the term is really defined for the HVS. An image
domain that is an approximation of perceived brightness, i.e.,
which is approximately linear to perceived brightness, will
henceforth be called a perceptually uniform (PU) domain.
Examples of (grayscale) PU domains are lightness and luma;
however, they are only designed for LDR images. Any PU
domain will correspond to a concave nonlinear mapping
from the illuminance domain.

1.2 High Dynamic Range Images

The HVS can adapt to illuminance levels of about 10 orders
of magnitude, and at any given adaptation level about five
orders of magnitudes are perceived. As mentioned, for a
given exposure setting, camera sensors have a lower dynamic
range than that of many natural scenes (and of the HVS),
which will cause saturation of sensor elements, either from
over- or underexposure. Thus, the sensors are said to have a
LDR. In HDR image reconstruction, a single HDR image is
constructed from two or more LDR images captured with
different exposure settings. The LDR images must be aligned
and should be captured in a quick sequence, such that local
motion in the scene is kept to a minimum. The images are
merged by weighted average in a PU image domain. Weights
of saturated pixels are naturally set to zero. Given a set of

LDR images in the pixel value domain, their corresponding
sensor exposures are retrieved by an inverse mapping with
the camera response function (CRF). Illuminance domain
images are subsequently obtained by scaling the images with
the inverse of their respective exposure durations. Finally, the
images are transformed to e.g., the log-illuminance domain,
which is an approximation of lightness (because perceived
brightness of the HVS is much closer to logarithmic than
linear in illuminance), where the weighted average is taken.’

To reproduce an image of an HDR scene on a display
device, e.g., a computer monitor, it has to be tonemapped
to the lower dynamic range of the display device."* The
tonemapping essentially compresses the dynamic range
uniformly in a suitable domain, but more sophisticated
tonemappers also do local processing. For example, image
contrasts may be compressed more on edges between image
segments than on details within image segments. Addi-
tionally, suitable color spaces are used in order to maintain
high color fidelity. The output LDR image, typically stored
in a standard 8-bit format such as sRGB, is perceived by the
HVS to still contain HDR information. HDR applications are
recently starting to reach the general public. For example,
smartphone applications that take two images in a sequence
and generate a merged HDR image have reached widespread
use, and similar features are common in modern commercial
cameras. The result is often satisfactory, although artifacts
sometimes occur due to spatial misalignment.

1.3 Super-Resolution Reconstruction

The signal processing technique SRR makes use of multiple
degraded LR images of the same original scene.”® In order to
be useful, each image must contain new information of the
scene, which is the case if the images are shifted relative to
each other on a subpixel scale (e.g., from natural camera
movement) or if they are blurred by different blur functions.
In the corresponding mathematical model, this means that
the images each contribute with linearly independent
observations of the desired HR image representation. To
reconstruct an HR image, an inverse problem is solved,
including image registration (alignment) with high precision
as well as blur estimation, either as pre-processing or jointly
with estimating the HR image. A property of SRR is that the
resulting inverse problem is fundamentally ill-conditioned,
which presents big challenges.”® If a larger number of
observations are used, the conditioning improves, but only
slightly. Furthermore, because complex motion between
frames is undesired, a relatively small number of images

Table 1 Description of light units in the context of the HVS and digital cameras.

Unit Description

HVS Camera

Irradiance (Radiometric) Incident power spectrum /(1)

llluminance (Photometric) [=,1(A)V(2)da, where V(1) is the

luminous efficacy curve of the HVS
Perceived brightness, A nonlinear function of illuminance
e.g., Lightness, Luma
(Photometric)

Sensitive to light of wavelength
A € [380,700] nm

The power registered by the
photoreceptors

A subjective measure

Filter /(1) according to approximated
luminous efficacy

Filtered light exposes the sensor to
approximate illuminance of the HVS

Standardized units such as lightness
and luma are approximations of
perceived brightness
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is preferred so that they are close temporally. Thus, to
improve the conditioning, a regularization term is often
added to the problem formulation. The regularization func-
tion should enforce a solution that matches the statistics of
the image, or rather of natural images in general, since the
statistics of the unknown image are unavailable.

Bayesian interpretations, in which the unknown image is
viewed as stochastic, of the SRR problem are common.”!
Similarly to deterministic methods, they lead to minimizing
a (regularized) objective function. A prior is assumed on the
HR image and often also on other system parameters that
should be estimated. For example, fine-scale image regis-
tration can be cast as a stochastic problem, with a prior
selected for the registration error that remains after a rough
pre-processing registration. Blind super resolution (BSR)
addresses the joint estimation of HR image and blur kernels
(that include subpixel level shifts).!' BSR has clear similar-
ities with multichannel blind deconvolution,'? with the added
extension of downsampling. BSR is very challenging in
terms of finding the global optimal point, due to its noncon-
vex structure. Often, simple parameterizations of the blur
kernel are made, or it is assumed static to model only the
blur effect of the sensor. Applications of SRR exist both for
offline processing, such as astronomy and forensics, and for
real-time processing, as for video streaming. Work on real-
time implementations are increasingly common, including
SRR implementations on custom hardware such as Field
Programmable Gate Arrays. Custom sensors may also be
used, that can e.g., increase pixel size for desired improve-
ment of temporal resolution in situations with moving
objects that are susceptible to motion blur.'® The spatial res-
olution is then maintained by performing SRR on the frames
with reduced resolution. Optical flow models are imple-
mented to handle local object motion within the image
frames.

1.4 Super-resolution Reconstruction of HDR Images

Traditionally, SRR is performed on similarly exposed LDR
pixel valued images. However, during the past few years
SRR has also been applied to HDR images.'*!> The com-
bined dynamic range of the reconstructed HR, HDR image
has no restrictions, as the exposure durations of the input
images can be selected freely. A good reconstruction result
requires accurate image registration, both for spatial shifts
and to photometrically align the images in an HDR image
domain. Facing both geometric and photometric registration
adds some extra challenges, as compared to only geometric
registration.'® Ambitious methods implement optical flow
techniques to handle local spatial motion within the
images.!” If the input images to the HDR SRR are given
as 8-bit pixel valued images, the CRF is needed in order
to retrieve the illuminance information from the earlier
stage of the camera processing chain. However, if the device
was designed to perform HDR SRR, the illuminance infor-
mation (of a higher bit depth) could be more readily
available.

A common factor for the published work on SRR for
HDR images is that the reconstruction takes place in the illu-
minance domain, which, as discussed in Sec. 1.1, is highly
nonlinear to human perception.'® This is opposed to the case
of LDR SRR methods, where the reconstruction is per-
formed in the PU pixel value domain. Because illuminance
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errors at low illuminance levels have such a high perceived
impact, reconstruction errors in dim image areas cause
noticeable artifacts. Therefore, in this work, the HDR SRR
is performed in a tonemapped, PU domain. The HDR illu-
minance information is thus mapped by a nonlinear tone-
mapping function, modifying the inverse SRR problem
from a least squares (LS) problem to a nonlinear problem
of equal dimension. Note that the choice of tonemapping
function is nontrivial. They all aim to mimic the HVS but
should merely be seen as approximations.'* In the formu-
lation of the proposed method, a simple tonemapping
function is used, which nevertheless captures the main char-
acteristics of the HVS well (but should not be the preferred
choice for the application of visualizing HDR data). Methods
for image registration or the estimation of other system
parameters are outside the scope of this paper, the focus
is on the formulation of the inverse problem used in the
SRR. The remainder of this paper is organized as follows.
Section 2 describes the camera model for the image data
acquisition. In Sec. 3, a method for SRR on HDR images
in a PU domain is proposed. Section 4 provides experimental
results for the proposed method and a related illuminance
domain approach. Finally, Sec. 5 concludes the paper.

2 Camera Model

When acquiring an image, the camera sensor is illuminated
by a real-world scene for a given exposure duration. Let the
image X, of size X; X X, denote an HR representation with
dynamic range X../Xmin Of an original continuous scene,
and let x be its corresponding vectorized representation of
length (X,X,)x 12 nx1. It is assumed that the camera
provides a set of low-resolution and LDR images y; accord-
ing to the expression

N :f[Atk(DCHkX+nk)] + qy., k= 1,...,K. (1)

For each of the multiple observations, CHk, of size n X n,
performs 2-D convolution on the vectorized HR image x. Its
convolution kernel Hy, of support H; X H,, represents blur-
ring as well as planar small-scale spatial shifts (assuming that
rough image registration can be performed as pre-process-
ing) for y, relative to a reference image (e.g., y;). The down-
sampling matrix D, of size (n/L?) X n, decimates the spatial
resolution a factor L in the x- and y-directions, and Az, is the
exposure duration. Additive Gaussian noise ny, of variance o2
models the noise in the image sensor. In addition, by some-
what exaggerating the value of 62, other error sources can
be contained in n;. The y; images are quantized to 8-bit
pixel values, with uniformly spaced quantization levels
Y € {0,...,1}. This quantization effect is modeled by q,
while quantization in the A/D converter to a higher bit
depth is considered to be part of n.

The low-resolution exposure of the camera sensor is
e, = At;(DCy,x +ny). The e, vector is, similar to yy, ny,
and q, of size (n/L*) x 1. At each pixel i, the exposure
[e]; is mapped by the pixelwise, nonlinear CRF, f, to a
pixel value in the output image. A reasonable (simplified)
model of a real CRF, adopted for the simulations in this
paper, is
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0 E L Eqin
E-E.;, \7LpR
f(E) = (Emax_Emin) ’ Emin <EZ Emax ’ (2)
1 E > Emax

where y;pr < 1 makes the curve concave in the unsaturated
region. What causes the y, images to be of LDR is the
fixed operational range of exposure values of the CREF,
[Emin» Emax)- Exposure values outside of this interval are
clipped and can not be recovered (from that single image).
The CRF is said to perform gamma compression on the
exposure image, to an LDR, PU output domain.

2.1 Alternative Camera Models

It is interesting to note that the camera model used for LDR
SRR on pixel domain images differs from the camera model
for HDR SRR methods, without exception. The forward
model assumed for LDR SRR is

yi = DCyq, f(AX) + 1y, k=1,...,K, 3)
for which the order of f and DCy, is interchanged as com-
pared to Eq. (1).” From the set of observations, {y,}, the
desired pixel valued HR image z = f(Arx) is to be recon-
structed. The model in Eq. (3) is thus used in the formulation
of the inverse problem, where it relates the unknown HR
image to the actual observed LR data. The inconsistency
in the choice of camera model gives rise to the question
of what model, Eq. (1) or Eq. (3), is closer to the real physics
of the camera. One of the two, LDR SRR or HDR SRR, has a
larger model mismatch that comes into play when real-world
data is considered. The choice of camera model is not inves-
tigated further in this paper.

3 Image Reconstruction in a Perceptually
Uniform Domain

To reconstruct, or rather to find a good estimate of x, an
inverse problem should be formulated and solved. To do
so, knowledge of the system parameters in Hy, including
blur functions and subpixel-precision relative motion
between image frames, is necessary. Assuming these, as
well as the CRF f, to be known or to have been estimated,
a compact notation is introduced in the beginning of this sec-
tion to aid the inverse problem formulations. Then, in the
remainder of the section, three different HDR SRR formu-
lations are described, one which has an objective function
that is expressed in the illuminance domain, and the other
two in which a PU domain is employed. For mathematical
convenience, the impact of the quantization noise q; will be
neglected in the inverse problem formulation (quantization is
nevertheless used when generating y,), as it typically has lit-
tle impact on reconstruction results compared to other error
sources, e.g., n; (and in the more general case, to errors in
system parameter estimates).

To align the observed images y; photometrically, the cor-
responding illuminance domain images [of the same size
(n/L*)x 1]

iy = g(ye) /Aty “4)

are recovered by mapping each pixel value in y, with the
inverse (not in the strict sense, due to the clipping effect) CRF,
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g(¥) = YW1 (E 0 — Engin) + Enin, (5)

followed by a scaling with 1/Az,. To handle saturation in f,
each observation y; has a corresponding diagonal weight
matrix Wy, of size (n/L?) x (n/L?), which is zero for diago-
nal elements corresponding to saturated pixels in y; and one
for the remaining diagonal elements. Saturated pixels are
those where [e;]; & [Emin» Emax]- However, since only the
y; are at hand, saturated pixels are taken to be those where
[yx]; is either O or 1, the lowest and the highest quantization
levels respectively. Based on the camera model in Eq. (1),

Wi = Wilg(ye)/An] =

:Wk(DCHkX+nk), k= 1,...,K, (6)
where the second equality holds if the quantization effect is
neglected, which means that g(f()) is the identity function for
the unsaturated region of f. By stacking the individual LR,
LDR illuminance domain observations in i = [il,...,ik]7,
the noise vector n = [nl,... nk]?, both of size (nK/
L?) x 1, defining a block diagonal weight matrix W =
diag(Wy,...,Wg), of size (nK/L?)x (nK/L?), and
# = [(DCx,)".....(DCy,)T]", of size (nK/L*) x n & mx
n, it follows that

Wi = W(%x +n). 7

More generally, W could be designed to weigh observed
data differently, as a function of e.g., its pixel value and expo-
sure duration, according to the noise properties of Eq. (1).!*
In the image reconstruction, the objective is to minimize the
difference, in some sense, between W7 'x and the faithfully
(unsaturated) observed information Wi. Thus, a distance
measure of the residual function r(x) should be minimized
in order to obtain

X = argminp[r(x)] = 3 h[ri(x)).  Alri(x)] 2 0. Vi

®)

where p is a nonnegative, norm-like function. The objective
functions to be minimized in this paper all have the structure
above. The rank of W7 depends on the number of obser-
vations K, and specifically the unsaturated regions of the
images y;, as well as the selection of L. For example, if
there is no saturation (which however implies that x cannot
be an HDR image) and L = 2, K = L?=4 images or more
implies that WZ is full rank. However, due to the structure
of WZ, or more precisely due to the blur functions Hj
contained within, the inverse problem is inherently ill-
conditioned. Thus, even for a full-rank problem, the solution
is very sensitive to noise. By adding a regularization term of
a certain weight, the condition number of the overall problem
improves, at the cost of removing fidelity from the data term.
The remainder of this section presents three specific formu-
lations of the general inverse problem in Eq. (8). These are
then evaluated in Sec. 4.

3.1 The Least Squares Solution

Under the assumption of additive Gaussian noise n, the LS
estimate of x is optimal in the maximum likelihood sense.
However, the corresponding inverse problem is equivalent
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to minimizing the sum of squared reconstruction errors in the
illuminance domain, a domain that is nonlinearly related to
perceived error by the HVS, yet it is still used for SRR of
HDR images.'*!>!" The LS estimate is included mainly as
a benchmark for the proposed method. In order to improve
the condition number of the inverse problem and provide a
stable solution, a regularization term is appended. Thus, the

LS estimate is
Wx x— Wi
VT 0

for some linear regularization matrix I" of size n X n with
regularization weight parameter 4. Because images are typ-
ically piecewise smooth, I' is selected as a matrix that per-
forms 2D convolution on the vectorized image x with a 3 X 3
Laplacian kernel, that enforces a smooth solution by penal-
izing the 2nd order x- and y-derivative. The residual vector
here is denoted r; 5 (x). In the above case, the objective func-
tion is

O = |Irs(®)|53 = 27" ris (%), (10)

2

. . A . 2
X s = arg min £ arg merLS )|,
X X 2

®

2

where rig;(x) denotes the i’th component function in
ris(x). Because the system of equations is very sparse, an
analytic solution is computationally feasible for a fairly
large size of the problem.

3.2 The Proposed Objective Function

For the proposed objective function, the residual function
r(x) is formulated in such a way that errors perceived by
the HVS are penalized uniformly in the reconstruction.
Thus, for the estimate of x,

WIF () - ) ||
VTS (x)

Xpy = argmin

< arg min|rpy (x)||3.
X X

2

Y

reconstruction errors are measured in_a PU domain. Similar
to the CRF, f, discussed in Sec. 2, f here is taken to be a
power law function but with a different exponent, yypg-
Because the method that is used to generate an HDR ground
truth image (from a set of LDR images) only provides rel-
ative illuminance information, and not the true absolute val-
ues,’ the jlluminance information, i, is normalized before
applying f. The same notation is kept. The normalized illu-
minance information is then tonemapped to a PU domain by
F(-) = ()R, In this work, no special care is taken to cus-
tomize the value of yypr depending on the dynamic range of
i. It should be noted that, to instead minimize f[W(#x —i)],
i.e., the tonemapped difference, would be incorrect, since the
absolute illuminance level determines how sensitive the per-
ception of the HVS is. The objective function of Eq. (11) is

O, = [Irpu(¥) |3 = 227" gy (%), (12)

where rpy;(x) denotes the i’th component function in
rpy (X).
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To solve the nonlinear minimization problem in Eq. (11),
an iterative nonlinear programming method must be
employed. An initial estimate, x(?), may be taken as an inter-
polated version of an i, image. Furthermore, let x¥) be an
estimate of x at iteration k, then the estimate is updated
according to

XD = x(0) 4 gl go, (13)

where d(*) is the search direction and a'¥ is the step length at
iteration k. The search direction is of great importance with
regard to the convergence rate. The 1st order gradient descent
method is typically very slow to converge for the SRR prob-
lem. Because of that, higher order information is considered
in order to determine d*). A 2nd order Taylor approximation
of O =p[r(x)] in the neighborhood of x¥), as used in
Newton methods, is

Ox® +d®) x OxH) + GT (x*)d® + dOTH(x®)d®),
(14)

where G is the gradient vector and H is the Hessian matrix of
O. For the specific case of a (possibly) nonlinear LS objec-
tive function, as for O, (and O,), the gradient and Hessian
can be written in terms of r as

G(x®) = [V.OX)|lw =2 ri(x)Vyri(x)
— 237 (xW)r(x ), (15)

and
H(xW) = [VIO(x)]|xw

m+n

=2 Z[eri(x)v){ri(x) + ri(x) Viri(x)][xw
i=1
= 207 (x)J(x®) + S(x). (16)

Note that O(x), r(x), G(x), and H(x) all depend on x,
and thus need to be re-evaluated for each update in the iter-
ative optimization method. However, for compactness, this
dependency will not always be emphasized by writing out
the argument. The commonly used Gauss-Newton method
fits nicely for the optimization problem in Eq. (11). To
see this, consider the nonlinear residual function

[ Wn[(Z?:l %ljxj)y_iﬂ _

o (570 2

, (I7)
\/IZ?:l FU(X?)

rpy(x) =

VIS T

which consists of a data term rpy ;.,,(X) and a regularization
term Tpy uii1:men(X). The data term elements have small
residual values for x close to the true image. The regulari-
zation term is designed such that the true image should be
penalized as little as possible, but in practice its contribution
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to the residual is certainly not zero. Because the residual
elements are small near x, the Hessian H in Eq. (16) is
well approximated by Hgy = 2J7J,., dropping the term S,

[ or on 1T 7ot
x o ax, Wur# (Z;’l:l %’ij)
ar, ry " 7=l
J. = adxl T adx,l _ Wom? # 1 Zj:l %ij
r T+l Tmtn
- — Y - _1
o, ox, VAT 7!
a"y;ﬂ a’»;wrn ' —1
L ox, e ox, | \/Zrnlyx}l/

is computed. From here on, J,. refers to the Jacobian
matrix of the residual function r = rpy. By minimizing
the Taylor expansion in Eq. (14) with regard to d¥), and
replacing H® with Hg{ﬁ],

A% = —[I7 (x0) 3, ()]~ [J7 (xP e (x @), (19)

is obtained as the search direction to be used in the iter-
ative minimization in Eq. (13). By taking the inner prod-
uct of the gradient and the search direction dgy, it is seen
that the GN search direction is indeed a descent direction.
This is a nice property of the GN method, and it is a con-
sequence of the positive definiteness of Hgy. Standard
GN does not include any step size al¥) in its updates.
However, while Hgy = 2J7J, is positive definite (by
construction), J, is only valid in a region around x¥) for
which it was evaluated, thus the update step may be
taken too large. By including a line search method to
determine the step size at each iteration, the robustness
of the method is increased. The extended method is
famously known as damped Gauss-Newton, and it is used
here to minimize O,.

3.3 Reconstruction Using Robust Norm and Robust
Regularization

So far, the methods of reconstructing x have involved min-
imizing an objective function that is the L2-norm of a
residual vector. The LS solution is suitable when the residual,
at the optimum, has a Gaussian distribution. This was the
case for the (unsaturated) observations i in the LS formu-
lation of rig in Eq. (9). The residual function rpy(x) in
Eq. (11), however, does not follow a Gaussian distribution.
Thus, using another norm function could give a more suit-
able estimate. A second reason to consider other functions
than the L2-norm is that any errors in the system parameters
of # (which would be the case for a practical setup where
system parameters themselves need to be estimated), as used
in the inverse reconstruction model, give a model mismatch
with the observation model.

As mentioned, a regularization term is usually added to
avoid noise amplification and thus stabilizes the solution.
Depending on the amount of noise, the weight parameter
A for the regularization term should be adjusted accordingly.
The larger 4 is, the more important it becomes that the sol-
ution preferred by the regularization term matches the true
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which contains the second order derivatives of r;. In order
to obtain dgy, at each iteration

—1 7
Wiy Za (Z;I:I %ljxj)y

:n -l
Wmmy%mn (Zj:l %le) (18)
\/Zrlnyx{l_l

VAT

[
statistical properties of x. For this purpose, large values of

Tpi1:men(X) should be interpreted as edges, which are a
natural part in images, and should not be penalized. The
Lorentzian “norm” (not really a norm since it violates the
triangle inequality),

Pra(t) = Shters() = Slog 1+ 0)

where T; > 0 are constant parameters, has been introduced
and showed promising results for SRR in which several dif-
ferent noise models were tested.!” The T are interpreted as
threshold values. For r; smaller than T, p.(-) acts as the
L2-norm and penalizes residual components quadratically,
while for r; greater than T';, py . (+) acts as the L1-norm, mak-
ing the reconstruction less sensitive to large residuals that
correspond to outliers in the data term or edges in the regu-
larization term. In this regard, the simple linear Tikhonov
regularization with the Lorentzian norm achieves the same
edge-preserving property, which is the motivation for the
use of the bilateral total variation regularization.®'

Using the same residual function r = rpy as for O,, com-
bined with the Lorentzian norm, a third estimate of X is

Xor = arg minpy o [rpy (x)]. @1

The corresponding objective function is

2
O3 = pror[rey (x)] = {Zf"l log {1 +1 (—r"UT"'](X)> ]
2
+2 1 log [1 +3 (—"’UT""Z(X)) } } , (22)

where T| and T, are the threshold values of the Lorentzian
norm for the data term and the regularization term respec-
tively. The nonlinear objective is minimized iteratively.
The GN method used for Eq. (11) does not fit this problem.
Instead, the update equation for the iterative minimization of
Eq. (22) is

x(+1) = x(0 4 plglh) (23)

where P is a linear transformation performed on the gra-
dient vector
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m+n

iy = V.05(x) = > b/ (r)Vori(x) = S (x)y(x)  (24)
i=1

V= [hlior,l(rl)’ e hlior,ern(rern)]T
2 2 T
= sy —| 25)
2Ty +ry 2T5 + T

If P is the Hessian matrix

m—+n

Ho, (%) = V3O3(x) = Y {h{l0 (ri) Vori(x)VEri(x)
i=1
+ hlior.i(ri)v)%ri(x)}’ (26)

the iterative Eq. (23) update is the Newton method. However,
P may be any linear transformation, as long as it gives a
higher convergence rate as compared to that of the gradient

direction it is beneficial. It is preferred to be positive definite,
as this guarantees to give a descent direction in the neigh-
borhood of x(¥). The choice P*¥) = (JTJ,)~! in Eq. (23) is
empirically proven to give a high convergence rate for
Eq. (21), and is thus used for the experiments.

4 Experimental Results and Discussion

In this section, the three SRR formulations presented in
Sec. 3 are evaluated in terms of experimental results. To com-
pare the quality of the estimates, X;g, Xpy, and X, their
respective tonemapped results are presented. This provides
a subjective comparison. As objective measures, PSNR
and MSSIM values are given for the tonemapped results rel-
ative to the tonemapped original image x.*’ The tonemap-
ping function in MATLAB is used to display all HDR
images, as it gives morg, visually appealing images than
when tonemapping with f.

Two original images are used in the presented experi-
ments, Memorial Church and Mount Tam (Images are cour-
tesy of Greg Ward, available at Ref. 21), displayed in Figs. 1(a)
and 2(a), respectively. From each of these images, a set of

Fig.1 Top row, from left to right: (a) Original image Memorial Church. (b) The observed images y/ (c) Bicubic interpolation of an LR, HDR version of
Memorial Church. Bottom row: Reconstruction results using (d) 64, (€) 0, and (f) Os.
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(2)

Fig. 2 Top row, from left to right: (a) Original image Mount Tam. (b) The observed images yj. (c) Bicubic interpolation of an LR, HDR version of
Mount Tam. Middle row: Reconstruction results using (d) 04, (e) 05, and (f) ©5. Bottom row: More reconstruction results using 04, with 1 set to (g)

10, (h) 0.1, and (i) 107S.

semisynthetical LR, LDR observations are generated accord-
ing to the model in Eq. (1). Parameters used for the CRF are
yipr = 1/2.2 and [E i, Epax] = [0.1, 100]. The pixel values
of y, are quantized to 8 bits. The corresponding illuminance
domain images i;, contained in i, are obtained as in Eq. (4). For
both experiments, K = 4 images are used to reconstruct HR
images with a resolution enhancement factor of L = 2. This
setup would give a full rank inverse problem if all images
were free from saturation, which is however not the case
here due to the original images being HDR. The differently
exposed y, images are shown in Fig. 1(b) as well as in
Fig. 2(b), with saturation visible in all of them. The blur kernels
used to generate y,, contained in the respective Hy, all have a
Gaussian shape with standard deviation of 1 and a support of
4 x 4 pixels. The kernels of H,, H;, and H, are shifted spa-
tially [0.5,0], [0,0.5], and [0.5,0.5] pixels, respectively, on the
HR pixel grid relative to that of H;, such that the correspond-
ing y, is shifted accordingly, providing linearly indepen-
dent observations of x. Finally, o}l =0.01 is the noise
variance of ny. In experiment 1 on the Memorial Church image
(of size 384 x256), the exposure durations are Af=
{2=11,276. 276 2=1}. For experiment 2 on the Mount Tam
image (of size 182 x 302), At = {273,273,271, 271},

The pixelwise function f(-) = (-)"#® is used for O, and
Oj3 in order to tonemap the normalized illuminance domain
data, thus achieving a residual function rpy that is PU with
respect to the HVS. There is no established value for the
exponent yppr of f. Instead, it is selected here as ypypr =
1/6 based on empirical tests. Thus, it is lower than that
of the LDR case, y;pr = 1/2.2. It is noted that the authors
of the image appearance model iCAM, similarly, suggest that
an exponent of 1/6 is required in order to clearly perceive
details in dim areas (that is, to make that data roughly
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perceptually uniformly coded), when using a power law
function such as f for visualization of an HDR image.”
In their updated model, iCAMO6, the HDR data is raised
by an exponent of of 1/3 at one step and later by an addi-
tional exponent of 0.7. Due to use of several color spaces and
additional manipulation, however, no clear value for the total
gamma is given.'

As a lowest acceptable performance limit for SRR meth-
ods, consider the interpolated images in Figs. 1(c) and 2(c).
These have been obtained by first creating an LR, HDR
image using perfectly registered LR, LDR images, one for
each unique exposure duration, and the exact g function for
photometric alignment, followed by bicubic interpolation in
order to increase the resolution a factor L = 2. Figure 1(d)-
1(f) shows the reconstructed images, X;g, Xpy, and Xi
obtained from minimizing O, O,, and Oj, for the Memo-
rial Church image. The regularization weight parameter used
is 4 = 0.02, 0.03, and 0.02 respectively. Similarly, the results
for the Mount Tam image are shown in Fig. 2(d)-2(f), all
acquired with 1 =0.05. The threshold values for the
Lorentzian norm in 05 are set to T = T, = 0.1 for both
experiments, selected to give the highest possible MSSIM
value, the same criterion used as for selecting A (parameter
values were selected empirically). PSNR and MSSIM values
for the tonemapped reconstruction results are given in
Table 2. Since PSNR is a crude measure for image quality,
emphasis should be on the MSSIM values. Edge artifacts are
clearly visible in the dim regions of the LS illuminance
domain estimate x;g. These artifacts are not present for
the SRR results in the PU domain f(-). Thus, visual inspec-
tion is needed to complement the PSNR or MSSIM values
that do not fully convey the results of the reconstruction.
However, the proposed objective function O, and its
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Table2 Experimental results. PSNR and MSSIM values are given for tonemapped SRR estimates t(X) relative to the tonemapped original image
t(x), where t(-) denotes the MATLAB tonemapping function. The highest PSNR and MSSIM values for each of the original images are highlighted

in bold.
Image Method Parameters PSNR(t(X), t(x)) MSSIM(t(X), t(x))
Memorial Church 0, 4=0.02 35.659 0.8813

05 4=0.03 36.435 0.9259

O3 1=0.02, T; =0.1, T, = 0.1 36.707 0.9275
Mount Tam 04 A=0.05 35.901 0.8771

0, A=0.05 37.307 0.9054

O3 A=0.05T,=0.1,T,=01 37.290 0.9055

alternated version O3 do result in higher objective quality
measures as well. There is a slight improvement by using
the Lorentzian norm of rpy as in (5 rather than the L2-
norm in O,, but it is minor. Simulations using imperfectly
estimated H; in the SRR do not seem to further enhance
the performance difference of using the robust Lorentzian
norm as compared to using the L2-norm; however, more rig-
orous investigations for this case would be interesting.

For the Mount Tam image, additional reconstruction
results for the objective function O; are shown in Fig. 2(g)-
2(i), with 2 = 10, 0.1 and 107° used respectively. It is seen
that the increased value of A from 0.05 to 0.1 gives a less
noisy result compared to the LS reconstruction in Fig. 2(d);
however, the edge artifacts are magnified. A too-high value
for 1 leads to oversmoothing, while a too-low value for A
results in severe noise amplification due to the poor condi-
tion number of the inverse problem. For the reconstruction
result in Fig. 2(i) with 1 = 107, K =8 images are used, four
for each of the two different exposure durations, which
means that the problem is full rank. Thus, it is clear that
due to the ill-conditioned structure, regularization is neces-
sary, which in turn gives numerical reconstruction errors par-
ticularly at image edges. These errors have a large perceptual
impact for low-illuminance levels, as results show when per-
forming SRR in the illuminance domain as for O;. For O,
and O3, as an example, setting A for SRR of the Mount Tam
image to 0.01 or 0.1 instead of the current choice of 0.05
does not cause much noticeable difference in the results.
The SRR method presented in this paper could straightfor-
wardly be applied to color images, by treating each RGB
color channel individually. This gives satisfactory results,
even though it is not optimal in terms of color fidelity. The
RGB channels should then be coded jointly, such as for the
LDR L*a*b color space.

5 Conclusions

This paper treats SRR of differently exposed LDR images. A
formulation of the HDR SRR problem in which perceived
difference is minimized in an appropriate, PU image domain
has been proposed. As shown in experimental results, even
small numerical reconstruction errors will have a large per-
ceptual impact in dim image areas if the illuminance domain
is used in the objective function, due to the nonlinearity of
the illuminance domain to perceived brightness of the HVS.

Optical Engineering 102003-9

This issue is overcome by using the proposed approach.
Because the proposed residual function is non-Gaussian,
an alternative to the L2-norm was suggested, which,
however, only gave a minor improvement in the presented
experiments.
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