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ABSTRACT. We introduce a lensless long wave infrared (LWIR) sensing system, utilizing double-
random phase encoding. The employment of thin random phase encoding elements
eliminates the need for traditional optical lenses. For object classification, convolu-
tional neural network is used to process the speckle patterns produced by the
random phase encoding, thus avoiding the reconstruction problem associated with
lensless imaging. This approach is attractive for applications demanding compact-
ness and cost-efficiency for LWIR systems. Experiments are provided to illustrate
the proposed system. Our results demonstrate that this system competes well with
conventional lensed LWIR imaging methods in a binary classification task under
noisy conditions, where noise is not known a priori. To the best of our knowledge,
this is the first report on such approaches in the LWIR domain.
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1 Introduction
Current trends of decreasing costs of micro-bolometric sensors1 have driven long wave infrared
(LWIR) imaging to become an increasingly vital electromagnetic spectrum for industrial, com-
mercial, and military applications.2 Although state-of-the-art LWIR optical setups are increas-
ingly efficient, the vast majority rely on lenses for sensing and imaging, binding them to several
key limitations. Of primary consideration is the resolution of the lens, which is limited by the
Raleigh criterion3 and dependent on the size of the aperture. The issue of increasing the size of
the aperture is further compounded due to the material dispersion and absorption effects in the
LWIR band, leading to only a small subset of relatively expensive materials, such as chalcoge-
nide class, germanium, or silicon, being suitable for an LWIR lens. This becomes a challenging
manufacturing issue when coupled with the risk of aberration with fabricating large lenses.4

In addition, LWIR lenses are much bulkier than their visible spectrum counterparts leading to
further increased size and weight of the sensing system.

In response to these limitations, our research proposes a differing approach: the substitution
of the conventional lens with a more economical and easily manufacturable thin random encod-
ing element optimized for the LWIR band. Utilizing such an encoding element, we propose
a passive thermal imaging system that depends on the temperature gradient of a scene.

In specific, we propose utilizing a lensless approach, utilizing Mie diffuser(s) to induce
pseudo-random phase encoding in the LWIR band. Such lensless systems employing random
phase encoding do not capture visually recognizable natural images, requiring the user to either
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computationally reconstruct a scene5–10 or perform classification tasks directly on capture
speckle images.11–23 The efficacy of random phase diffusers in the classification task, particularly
under coherent illumination,11–14 is well documented in a variety of fields, such as medicine15–20

and agriculture,21 while also being an integral optical element in incoherent lensless
reconstruction5–10 and incoherent speckle classification.22,23 Diffusers reduce cost, complexity,
and size9–23 compared to conventional lensed systems.

Our experimental setup utilizes two cascaded Mie diffusers, where each diffuser acts as
random phase masks with feature sizes comparable to that of the wavelength. Unlike amplitude
masks, phase masks do not generate the obstruction of light, thereby minimizing potential infor-
mation loss.24,25 While uniformly redundant arrays are used as an LWIR mask in an RGB-LWIR
fusion system for reconstruction,26 they are generally more complex to implement than random
phase masks.

In this paper, we capture incoherent speckle images of a variety of scene configurations in
the LWIR domain, classify them with a ResNet-18 convolutional neural network (CNN), and
compare the performance across experiments. Specifically, we compare the binary classification
of thermally self-radiating objects with both differing and similar intensity levels, imaged
through both lensed and double random phase encoding (DRPE)16 configuration(s). By capturing
similar scenes in both LWIR lensed and DRPE configuration, we seek to both characterize and
compare the relative performance and robustness of accordingly trained CNNs on a small dataset.

2 Methods

2.1 Systems Overview
The system we pursue is not overly complex and is based on a typical DRPE system. The system
consists of a thermal scene in the object plane, two random phase diffusers, in parallel with
a thermal imaging sensor, as shown in Fig. 1.

The diffuser(s) are fabricated in the lab with abrasive techniques.24,25,27–29 The sensor is a
240 × 320 microbolometer at 17 μm pixel pitch. When collecting data imaged with lenses for
comparison, we employ an optical lens with an effective focal length of 11 mm and an aperture
(f∕#) of f∕1.2. When this camera uses a lens, it is typically used for machine vision, making it an
ideal candidate to use for comparisons between lensed and lensless diffuser based data. We used
standard calibration across all imaging modalities to avoid changes in relative performance. A
diagram of our diffuser system is shown in Fig. 1. We captured scenes at distances between 1 and
3 m. All images were acquired with the subjects positioned within a maximum angular deviation
of 35 deg from the optical axis. Further, we experimentally find fixing the distance between
diffusers, z2 ¼ 5 mm, yields strong scattering at the sensor. Note that, z3 is dictated by the length
of the lens tube after lens removal, that is, z3 ¼ 12 cm. An overhead view of the system con-
figuration is shown in Fig. 2.

Fig. 1 Schematic diagram of optical field propagation through cascaded diffusers.
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2.2 Mathematical Description of Double Random Phase Encoding System
The optical theory for propagation follows the usual formulations for thin diffusers.30 The fol-
lowing optical theory for propagation corresponds to Fig. 1. In our experiments, the object field is
unknown and is denoted as U0ðx; yÞ. Due to the finite dimension ðDζ; Dη; Dξ; DφÞ of the rec-
tangular diffusers and large spatial frequencies present in the Fourier transform, not all spatial
frequencies can be captured.30 The maximum spatial frequencies for the first diffuser will be
denoted as ðfxm; fymÞ and the second diffuser will be denoted as ðfζm; fηmÞ. We write our ideal
low-pass filter(s), hD1ðx; yÞ and hD2ðx; yÞ, with cut off frequencies ðfxm; fymÞ and ðfζm; fηmÞ,
respectively, where the convolution is denoted as *.

EQ-TARGET;temp:intralink-;e001;117;439hD1ðx; yÞ ¼ fxmfym SincðxfxmÞSincðyfymÞ; (1)

EQ-TARGET;temp:intralink-;e002;117;403U 0
0ðx; yÞ ¼ U0ðx; yÞ � hD1ðx; yÞ: (2)

The field is then propagated at a distance z1 to the first diffuser, where Ϝ−1f�g denotes the
inverse Fourier transform:

EQ-TARGET;temp:intralink-;e003;117;371U1ðζ; ηÞ ¼ U 0
0ðζ; ηÞ � Ϝ−1

�
exp

�
j2πz1
λ

½1 − ðλfζÞ2 − ðλfηÞ2�1∕2
��

: (3)

The first diffusers transmittance function, tD1ðζ; ηÞ, is given below, where Φðζ; ηÞ is the
random phase angle uniformly distributed between ½0;2π�:

EQ-TARGET;temp:intralink-;e004;117;309tD1ðζ; ηÞ ¼ expðjΦðζ; ηÞÞRect
�

ζ

Dζ
;
η

Dη

�
: (4)

The field through the diffuser can then be written as

EQ-TARGET;temp:intralink-;e005;117;258U 0
1ðζ; ηÞ ¼ tD1ðζ; ηÞU1ðζ; ηÞ: (5)

We repeat these steps to propagate the light to the second diffuser by taking into account the
maximum spatial frequencies ðfζm; fηmÞ, imposed by the second diffuser:

EQ-TARGET;temp:intralink-;e006;117;209hD2ðζ; ηÞ ¼ fζmfηm SincðζfζmÞSincðηfηmÞ; (6)

EQ-TARGET;temp:intralink-;e007;117;173U 00
1 ðζ; ηÞ ¼ U 0

1ðζ; ηÞ � hD2ðζ; ηÞ; (7)

EQ-TARGET;temp:intralink-;e008;117;155U2ðξ;φÞ ¼ U 00
1 ðξ;φÞ � Ϝ−1

�
exp

�
j2πz2
λ

�
½1 − ðλfξÞ2 − ðλfφÞ2�1∕2

�
; (8)

EQ-TARGET;temp:intralink-;e009;117;123tD2ðξ;φÞ ¼ expðjΦðξ;φÞÞRect
�

ξ

Dξ
;
φ

Dφ

�
; (9)

EQ-TARGET;temp:intralink-;e010;117;91U 0
2ðξ;φÞ ¼ tD2ðξ;φÞU2ðξ;φÞ: (10)

Finally, we repeat these steps to propagate to the image sensor with maximum spatial
frequencies ðfξm; fφmÞ imposed by the image sensor size:

Fig. 2 Overhead view of the experimental setup.
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EQ-TARGET;temp:intralink-;e011;114;736hSðξ;φÞ ¼ fξmfφm SincðξfξmÞSincðφfφmÞ; (11)

EQ-TARGET;temp:intralink-;e012;114;706U 00
2 ðξ;φÞ ¼ U 0

2ðξ;φÞ � hSðξ;φÞ; (12)

EQ-TARGET;temp:intralink-;e013;114;688USðα; βÞ ¼ U 00
2 ðα; βÞ � Ϝ−1

�
exp

�
j2πz3
λ

�
½1 − ðλfαÞ2 − ðλfβÞ2�1∕2

�
; (13)

EQ-TARGET;temp:intralink-;e014;114;656U 0
Sðα; βÞ ¼ USðα; βÞRect

�
α

M
;
β

N

�
; (14)

EQ-TARGET;temp:intralink-;e015;114;625Iðα; βÞ ¼ jU 0
Sðα; βÞj2: (15)

From Eq. (15), the continuous field is then sampled by the sensor at each discrete
pixel location, where each pixel value is the average intensity over some time on that pixel.
For the sake of derivations here, integration time is not accounted for. Let the pixel size be equal
to ðpα; pβÞ centered about discrete points ðm × pixα; n × pixβÞ such that −M

2
≤ m ≤ M

2
,

− N
2
≤ n ≤ N

2
and ðpixα; pixβÞ are pixel pitches along the ðα; βÞ axis. Then, let Sð·Þ be the sensor

sampling function defined as

EQ-TARGET;temp:intralink-;e016;114;542Sð·Þ ¼ Rect

�
α −m × pixα

pα

�
Rect

�
β − n × pixβ

pβ

�
Rect

�
m
M

�
Rect

�
n
N

�
: (16)

Then, the sampled intensity IS½m; n� is given below; a deviation from the monochromatic
illumination is the integration over wavelength, due to an incoherent source over a wide band.
Where QEðλÞ is the quantum efficiency of the sensor with respect to the wavelength λ:

EQ-TARGET;temp:intralink-;e017;114;467IS½m; n� ¼ 1

PA

Z
14 μm

7 μm

ZZ
Iðα; βÞQEðλÞSð·Þdα dβ dλ; (17)

EQ-TARGET;temp:intralink-;e018;114;418PA ¼
Z

14 μm

7 μm

ZZ
QEðλÞSð·Þdα dβ dλ: (18)

2.3 Data Collection Procedure
The experiments pursued sought to investigate the relative performance of our lensless diffuser
based system in the binary classification task under varied thermal scene conditions, when com-
pared with a comparable lensed configuration. Two primary cases are investigated, the first case
sought to gauge the performance of the lensless diffuser based system when two classes have
intensities that significantly differ from one another; and the second case investigated when two
classes have intensities that are similar. To achieve this, we use an iron and a beaker containing
boiled water as self-radiating objects. These objects were chosen because the iron produces an
intensity that is significantly higher than that of the beaker, creating a strong contrast between the
classes. This, however, also means that when the two objects are put together, the resultant inten-
sity closely resembles the intensity pattern for iron. This allows us to effectively analyze both
differential and similar intensity scenarios. We conduct experiments with both imaging modal-
ities, under both experimental setups in order to establish the performance capabilities corre-
sponding to each of these configurations.

Further, we use self-radiating objects, such as a hot mannequin doll, a soldering iron, a
kettle, and incandescent lights bulbs as “noise” objects. This is done to create variation of the
background in efforts to prevent overfitting of deep learning models. The need for noisy objects
arises from operating in the LWIR, where we cannot easily change the background of our scene
as in the visible case. The use of noise objects is shown in Fig. 3.

Due to the lack of published research in LWIR diffuser imaging, we not only capture similar
lens based imaging data to compare against our lensless diffuser setup but also image without an
optical encoding element. This is to ensure that our diffuser(s) are not just acting as transmissive
windows. For each experiment, we collect 150 videos for both classes, varying the background
by shifting the “noise” objects and the class object. We will later add noise to the data in post-
processing, to evaluate noise’s effect on model performance in each imaging modality.
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2.4 Deep Learning Model
In this study, we employ a modified ResNet-18 architecture,31 which is a base 18-layer CNN. The
choice to employ a CNN over other methods, such as support vector machines (SVMs) or
random forests (RFs), arises from prior research with single random phase encoding (SRPE)
and DRPE systems. Under coherent conditions in SRPE systems, CNNs were shown to be more
robust to noise17 and data compression19 when compared to initial approaches utilizing RFs
or SVMs.15,16 In addition, the use of an RF or SVM requires careful selection of appropriate
features, which provides an additional refinement step in the imaging pipeline, as opposed to
using CNNs, which inherently extract features from data.

Prior to training the network, images are resized to 120 × 160. The sole alteration(s) to the
architecture involves replacing the final fully connected layer with a cascade of four fully con-
nected layers, the first one sized 16 and incorporating a dropout of 0.3. This is followed by fully
connected layers of size 8 and 4, ultimately concluding with a fully connected layer of size 2.
The output of this final fully connected layer is then passed through a sigmoid activated single
neuron, tailored for the binary classification task. The network is shown in Fig. 4.

Fig. 3 Sample frames: (a) sample frame from iron class taken with lens based LWIR imaging
configuration. (b) Sample frame from iron class taken with lensless diffuser(s) based configuration.
(c) Sample frame from iron class taken with no diffuser and no lens configuration, and (d) sample
frame taken in lens based visible imaging configuration for visualization.

Fig. 4 Visualization of modified ResNet-18 CNN architecture utilized in the experiments.
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To optimize the performance of the ResNet-18 based model on our LWIR dataset, we aug-
ment data and implement a hyperparameter grid search strategy. The specific data augmentation
strategies employed during this study are random rotations, random reflections, random scaling,
and random translations. During random rotations, each image was rotated by an angle uniformly
sampled from the range 0 deg to 360 deg. To facilitate random reflection, images were flipped
across horizontal and/or vertical axes. Random scaling involved either shrinking or widening
of the image by a scale factor randomly selected between a range of 50% (0.5 times) and
150% (1.5 times). Further, random translation shifts the images in both horizontal and vertical
directions by a random number of pixels within the range of −25 to 25 pixels.

The grid search methodology searches over optimizer type [adaptive moment estimation
(ADAM) and stochastic gradient descent method (SGDM)], mini-batchsize (32, 64, 128, and
256), and learning rate (1e-3, 1e-4, 1e-5). Early stopping was set with a patience of 15 iterations
and a validation frequency of 20 iterations. The model(s) trained on clean data are then evaluated
for their robustness to noise in the testing phase, as detailed in Sec. 3.

We present our optimal hyperparameters for each noise level and imaging modality in
Table 1.

3 Experimental Results
Training and testing of each model were performed as a five-fold cross validation. We separate
data into each fold by a unique video ID, as opposed to by frame, to prevent data leakage. The
motivation for the cross-validation procedure arises from collecting 1.5 s videos and then split-
ting them into frames, hence we cannot truly consider these data points as independent. To ensure
that the model is properly learning across datapoints, we use the cross-validation procedure to
ensure that different splits of the data yield similarly performing models and are not dependent on
the videos being used to train.

Our study evaluates each imaging system across various performance metrics, including
accuracy, precision, recall, F1-score, and area under the curve (AUC), across differing amounts
of noise. Accuracy is simply the total number of correctly selected classes, divided by total
predictions, (TP + TN)/(P+N), where TP is the true positive cases, TN is the true negative cases,
P is the positive cases, and N is the negative cases. Precision is a ratio of the correctly predicted
positive cases to the total number of predicted positive cases and can similarly be written
TP/(TP + FP), where FP is the false positive cases. Recall is a proportion of correctly predicted
positive cases to the total number of positive cases and can be written TP/(TP + FN). F1-score is
the harmonic mean of precision and recall. AUC provides significant information about the
ROC curve in a single scalar value. AUC ranges between 0 and 1, where an AUC of 0.5
signifies random guessing, and a value of 1 indicates perfect discrimination of positive instances.
In the first experiment, we use iron as our positive object, and in the second experiment, we use
iron + beaker as our positive object.

3.1 Experimental Results
Table 2 introduces the average results for tracked metrics across speckle noise, mean μ ¼ 0,
variance(s) σ ¼ ½0; 0.01; 0.03; 0.05; 0.08�. Both the iron versus beaker and iron versus iron +
beaker experiment(s), are presented with average results across noise levels. In Figs. 4 and 5,

Table 1 Optimized hyperparameters for each of the imaging modalities and noise levels.

Experiment Imaging modality

Hyperparameters

Batch size Learning rate Optimizer

Iron versus beaker Lens based 256 1e-3 ADAM

Lensless diffuser 128 1e-4 ADAM

Iron versus iron + beaker Lens based 128 1e-4 ADAM

Lensless diffuser 256 1e-4 ADAM
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we present the receiver operating characteristic (ROC) curve for the trained models for the iron
versus beaker and iron versus iron + beaker experiment(s), respectively. Each ROC curve is
shown for each noise level tested (Fig. 6).

3.2 Discussion
In examining the efficacy of imaging modalities under varying noise conditions in the iron versus
beaker and iron versus iron + beaker experiments, we gain valuable insights into their perfor-
mance. The lensless diffuser based imaging modality stands out for its robustness, maintaining
high accuracy and AUC values across both experiments: with 74.0% accuracy and 0.81 AUC in
the iron versus beaker experiment and 76.7% accuracy and 0.83 AUC in iron versus iron + beaker
experiment. Conversely, the lens based imaging modality demonstrates vulnerability to noise.
In the iron versus beaker experiment, its accuracy averages at 61.5% with a corresponding AUC

Table 2 Average results for each imaging modality across noise level(s) and experiments.

Experiment Imaging modality

Average metrics

Accuracy (%) F1-score Recall Precision AUC

Iron versus beaker Lens based 61.5 0.74 1 0.61 0.71

Lensless diffuser 74.0 0.73 0.77 0.79 0.81

Iron versus iron + beaker Lens based 64.2 0.33 0.31 0.40 0.75

Lensless diffuser 76.7 0.78 0.81 0.76 0.83

Fig. 5 ROC curves for iron versus beaker: (a) lensless diffuser based system in the presence of
multiplicative speckle noise and (b) lens based system in the presence of multiplicative speckle
noise, mean 0, variances [0, 0.01, 0.03, 0.05, 0.08].
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value of 0.71. Similarly, in the iron versus iron + beaker experiment, average accuracy 64.2%
with a corresponding AUC value of 0.75. These results underscore the lens based imaging
modality’s susceptibility to noise in both experiments, exhibiting significant issues in maintain-
ing classification accuracy and AUC.

Notably, while the lens based imaging iron versus beaker metrics are significantly higher
than their lens based iron versus iron + beaker counterparts, this is due to occurrence of false
positives versus false negatives in the models when noise is applied to the data. In the iron versus
beaker experiment, where the beaker is the negative object, and the iron is the positive object, the
addition of noise biases the detector to predict the positive object, resulting in an average recall of
1. In the iron versus iron + beaker experiment, where the iron is the negative object and iron +
beaker is the positive object, the addition of noise biases the detector to predict the negative
object, resulting in a comparatively low average recall of 0.31.

This does not imply either resultant model is “more” robust to noise than the other, instead
simply they are biased to different sides of the decision boundary by the applied noise.
Considering these concepts, it is clear that in both experiments conducted, the lensless diffuser
based configuration is significantly more robust to speckle noise in a priori conditions, given the
dataset tested.

Direct comparison to other SRPE and DRPE systems is challenging due to the unique spe-
cifics of the objects and conditions under which experiments were conducted. Each SRPE or
DRPE system is often tailored to particular object or sample types, encoding schemes, and envi-
ronmental conditions, making direct performance comparisons not straightforward. Comparing
our DRPE results to state-of-the-art lens based systems is equally problematic. Modern computer
vision architectures optimized for lens based data often utilize extensive pre-training on massive

Fig. 6 ROC curves for iron versus iron + beaker. (a) Lensless diffuser based system in the
presence of multiplicative speckle noise. (b) Lens based system in the presence of multiplicative
speckle noise, mean 0, variances [0, 0.01, 0.03, 0.05, 0.08].
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datasets as is done with vision information transformers.32–34 These advantages inherently skew
the performance metrics, making a direct comparison unfair and not indicative of the fundamen-
tal performance differences between lens based and DRPE approaches.

For these reasons, we experimentally compare a lens based imaging system to the proposed
DRPE system in similar experiments. Our results show that, given comparable dataset sizes,
the DRPE system demonstrates superior robustness to speckle noise compared to traditional lens
based LWIR systems. The enhanced robustness of DRPE in our specific setup underscores its
potential for applications where data volume is limited, and noise resilience is critical.

4 Conclusions
This paper presents to the best of our knowledge the first lensless LWIR system for classification
using a random phase encoder (diffuser). While we have used a DRPE system, a variety of dif-
fuser configurations may be used. By implementing random phase diffusers in lieu of traditional
lenses, this study showcases a method that exhibits enhanced resilience to noise while being a
compact and cost-effective sensor and benefiting from ease of manufacture. This approach, as
detailed in our experimental findings, underscores the inherent limitations of lens based imaging
systems—particularly their vulnerability to noise when the associated CNN is not trained on
noisy data. This is a particular limitation where the distribution of noise is not known a priori.
A key insight from our analysis lies in the robust performance of the lensless diffuser-based
system under varying levels of noise. The lensless diffuser LWIR system exhibited remarkable
resilience, maintaining particularly high accuracy and AUC metrics in the presence of noise;
a stark contrast to the lens based imaging modalities, which did not demonstrate significant
robustness under similar noise conditions. This implies that the diffuser-based system’s capabil-
ity when coupled with CNN(s) helps mitigate the effects of noise; making it a more suitable
choice for environments where noise is a significant challenge, and not known a priori.

In view of these experimental results, this method could be used in real-world applications
where rapid deployment of compact, lightweight, low cost, and thermal imaging systems is
necessary without extensive pre-training or a priori knowledge of noise characteristics. Such
a scenario includes, but is not limited to, emergency response, security surveillance, and indus-
trial monitoring, where quick adaptability to new environments and accurate and robust object
detection are crucial. The experimental results are consistent with earlier predictions on the noise
robustness of the lensless random phase encoding system.30,35

4.1 Future Work
Our research paves the way for future investigations into effects of different object materials on
classification results, as well as enhancing the optical encoding element and investigating per-
formance over distance. Further advancements could also be made in the machine learning pipe-
line by integrating more sophisticated models and preprocessing techniques or by expanding the
scope to include multilabel and multiclass classification. Larger networks and datasets may be
employed to increase observed metrics such as accuracy and AUC. Further improvements could
involve the use of ensemble methods and the potential incorporation of explicit compressed
sensing techniques.36
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Data sharing is not applicable to this article, the code base nor the collected data will be publicly
available due to export control restrictions. If one desires to replicate the results in our experiments,
they will require an LWIR imaging sensor, not necessarily export controlled; random phase
mask(s) optimized for the LWIR; follow our data collection and model fitting procedures; and prop-
erly vary scenes for uses on small datasets. Practitioners must be cautious of foregoing cross
validation on small datasets collected in the manner done in this paper, as doing so will most likely
cause some degree of overfitting.
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