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ABSTRACT. We present recent advances in lensless random phase encoded imaging for
cell identification as related to biomedical applications, accentuating the robustness
of methodologies through an examination of previously published works. Following
an explanation of the foundational principles of lensless random phase encoded
imaging for cell identification, discussions proceed on the evaluation of lateral res-
olution capabilities, current computational approaches, and an exploration of the
practical impacts of these advancements in cell identification for biomedical appli-
cations. In particular, we seek to foster a deeper understanding of the robustness of
key biosensor parameters in non-reconstructive lensless imaging for cell identifica-
tion and its role in computational imaging and biomedical diagnostics. To the best of
our knowledge, this is the first review of lensless random phase encoding for auto-
mated cell classification and its robustness to noise, and key bio sensor parameters.
These systems can be made into low-cost, compact, and field-portable biosensors
that are attractive for constrained healthcare systems.
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1 Introduction
In this review, we discuss previously published works in automated cell identification using lens-
less random phase encoding systems. Lensless random phase encoding is a class of imaging
techniques based on performing imaging tasks directly on a captured intensity pattern produced
by the interaction between the light field and some thin optical encoding element. In such meth-
odologies, the conventional lens in an imaging system is replaced with a phase or amplitude
mask, and appropriate algorithms are applied to classify the input object and improve the overall
system performance in terms of cost, compactness, and other metrics. This approach enables the
development of compact, cost-effective, and versatile imaging solutions as the removal of bulky
lenses cuts down on the size and weight of an imaging system. References 1–29 presented a
variety of lensless imaging approaches, including holographic systems. However, our focus
in this paper is on non-holographic lensless imaging systems that replace the conventional lens
with a phase-modulating element.

Non-reconstructive lensless imaging corresponds to one of the two primary approaches in
lensless imaging, the other being reconstruction-based lensless imaging. Each approach’s respec-
tive use depends on the practitioner’s desired goals. In reconstructive lensless imaging, data are
captured utilizing a chosen encoding element and are then digitally reconstructed to produce
two-dimensional (2D) images of the scene or three-dimensional (3D) volume data.1,2 Utilizing
a reconstructive setup allows the practitioner to inspect a natural image or volume resultant
from a reconstruction, allowing for further processing in an imaging pipeline.
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A typical reconstructive mask-modulated lensless imaging system1,2 is given in Fig. 1, where
an object wavefront is manipulated by a fixed optical mask and captured by an imaging sensor.
The captured measurements are computationally reconstructed to yield an estimated object
reconstruction.

Illumination-modulated lensless systems are also used for shadow imaging, holographic
lensless imaging,15–20 and time-resolved lensless imaging, but these approaches generally fall
outside the scope of discussions of this paper.

In reconstruction-based approaches, an important consideration is the reconstruction algo-
rithm used, with a focus on the computation time and the quality of the reconstruction. Several
prior review papers focusing on reconstructive lensless imaging have been published,1,2 which
provided significant detail on the topic and applications of reconstructive lensless imaging.
Such reviews enumerated the use case and the primary advantages of reconstructive lensless
imaging. Specifically, lensless imagers afford size, cost and weight savings, increased field of
view, inherent visual privacy, and the use of compressive sensing devices due to the spreading of
light across the sensor.1,2

The primary motivation behind non-reconstructive lensless imaging is to benefit from the
inherent properties of lensless imagers while avoiding the reconstruction problem entirely by
directly performing an imaging or sensing task on the captured data, without a reconstructive
step.3–10 Such systems may include single random phase encoding (SRPE) and double random
phase encoding (DRPE), which have been used for classification, and they may utilize pseudo-
random phase masks as their encoding element. Such systems have been shown to have a
lateral resolution, which is robust to pixel pitch, sensor size, and object-to-diffuser-to-sensor
distance,8 and whose classification performance is robust to noise, data obstruction,7 and data
compression.5

If one does not need spatial localization of a specific region in the object plane afforded by
reconstructive approaches but requires a computationally cheap approach to classify a sample,
SRPE and DRPE approaches provide the previously enumerated benefits, as well as the benefits
inherent to lensless imaging detailed earlier. Notably, in some cases, reconstruction-based
approaches can yield poor downstream performance in an imaging pipeline due to propagation
of reconstruction errors,9 leading non-reconstructive approaches to outperform them. A general
system diagram for an SRPE system is shown in Fig. 2.

Fig. 1 Typical system diagram of a reconstructive mask-modulated lensless system.
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Due to their portability, robustness, and accuracy, SRPE and DRPE systems are potential
candidates for application to medical diagnostics, particularly for deployment in developing
nations, where traditional biomedical imaging and diagnostics approaches may be cost-prohibi-
tive, require specialized training, or are not designed for field use. As an example, a 3D-printed
SRPE system used to identify sickle cell disease is presented in Fig. 3, measuring only 70 mm ×
130 mm × 155 mm and weighing ∼155 g.5 Even with these small dimensions, the system
achieves 88.70% accuracy and 0.9622 area under the curve (AUC) while still being robust
to data compression and obstruction.5

In this paper, we cover the theory and applications of SRPE and DRPE systems and
briefly discuss where typical reconstructive approaches diverge from the non-reconstructive
lensless imaging approach discussed. We progress to how machine learning can be applied to
non-reconstructive lensless imaging and what considerations must be made in developing
a machine learning pipeline. Finally, we conclude with the key benefits of the various
approaches and with specific impacts on biomedical imaging. Applications to cell classifi-
cation and disease identification are presented. To the best of our knowledge, this is the first
review of lensless random phase encoding for automated cell classification and its robustness
to noise, and key image sensor parameters. These systems can be made to be low-cost,
compact, and field-portable biosensors, which are attractive for healthcare systems with
constrained resources.

Fig. 2 (a) Schematic diagram of the SRPE imaging system and (b) a sample intensity pattern
captured by the image sensor.10

Fig. 3 (a) 3D-printed setup for SRPE system and (b) waveform propagation from the laser diode
source to the object plane, to the diffuser, and then to the lensless CMOS detector.7
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1.1 Theoretical Underpinnings and Basic Principles
The foundational theory behind lensless imaging draws upon wave optics and the modulation of
an incoming wavefront by an encoding element. By manipulating the wavefront that interacts
with an object, primarily done through an encoding element that encodes spatial information into
resultant intensity patterns, the practitioner can subsequently process the captured intensity
pattern pursuant to their end goal(s).

1.2 Non-reconstructive Lensless Imaging
Due to the lack of a reconstructive step, there is no need for an inverse model in non-reconstruc-
tive lensless imaging. A forward model is often utilized for the intensity captured at the sensor in
an SRPE system based on the system’s design.3–8 SRPE systems use a pseudo-random phase
mask, where the optical path length across a surface is randomly varied within a range to apply a
pseudo-random phase factor to the incoming field. For the SRPE system in Fig. 2, the derivation
for the intensity at the sensor is as follows:5

EQ-TARGET;temp:intralink-;e001;114;568Uobjðx; yÞ ¼ jAobjðx; yÞj expfjφobjðx; yÞg; (1)

whereUobjðx; yÞ is the complex object waveform leaving the object plane with amplitude
Aobjðx; yÞ and phase φobjðx; yÞ. The complex waveform is propagated a distance z1 under
Fresnel conditions

EQ-TARGET;temp:intralink-;e002;114;506Udiffuserðη; νÞ ¼ ½Uobjðx; yÞ � h1ðη; νÞ� expfjφrandðη; νÞg; (2)

where Udiffuserðη; νÞ is the complex field leaving the diffuser, φrandðη; νÞ is the random phase
imposed by the diffuser, * denotes the convolution operation, and h1ðη; νÞ is the Fresnel diffrac-
tion kernel as defined

EQ-TARGET;temp:intralink-;e003;114;446h1ðη; νÞ ¼ ½expfjkz1g∕jλz1� expfjkðη2 þ ν2Þ∕2z1g; (3)

where k is the wavenumber and λ is the wavelength. Then, the complex waveform is recorded at
the sensor at a distance z2 away, in the Fraunhofer region, is given by

EQ-TARGET;temp:intralink-;e004;114;398Usensorðα; βÞ ¼
expfjkz2g

jλz2
expfjkðα2 þ β2Þ∕2z2gFfUdiffuserðη; νÞgjfη¼ α

λz2
;fν¼ β

λz2

; (4)

where Usensorðα; βÞ is the complex waveform incident on the image sensor, Ff·g is the Fourier
transform (F.T), and fη and fν are the spatial frequencies associated with the F.T. The image
sensor records the intensity or magnitude squared of the complex waveform:

EQ-TARGET;temp:intralink-;e005;114;325Iðα; βÞ ¼ jUsensorðα; βÞj2: (5)

The captured intensity is referred to as a pseudo-random intensity pattern or in biological
contexts an opto-biological signature (OBS).4–6 The use of a pseudo-random phase mask spreads
the intensity across the entire sensor as a white pseudorandom pattern.3–8

This is a simplified approximation and does not incorporate the dimensions of the diffuser or
sensor or the physical process of sampling with a sensor. This approach also assumes Fresnel and
Fraunhofer regimes to simplify propagation, but angular spectrum propagation becomes neces-
sary for simulation purposes. Thus, although the prior approach correctly models the essential
optical processes in the SRPE-specific setups tested, a more detailed model would include these
sampling and propagation concepts to accurately represent the system’s behavior in a variety of
conditions.

In simulation-based experiments, such as those presented in Ref. 8 and covered in Sec. 2.1,
these considerations become crucial. This involves accounting for the pixel dimensions, sensor
array layout, and the finite resolution of both the diffuser and sensor. These factors are essential in
capturing the nature of light propagation, to ensure the simulation results, align closely with
experimental observations.

1.3 Reconstruction-Based Lensless Imaging, Forward, and Inverse Models
Here, we provide a brief review of reconstruction-based lensless imaging formulations to estab-
lish the basics of the reconstruction process. Detailed discussions of this approach are presented
in the cited reconstruction-based lensless imaging reviews1,2:
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EQ-TARGET;temp:intralink-;e006;117;736y ¼ Hx; (6)

whereH is a system-dependent matrix, x is the unknown scene intensity to be estimated, and y is
the measurement on the sensor.1,2 In such a formulation, the computational intensity of the prob-
lem becomes clear, assuming H is of dimensions N × N; then, the computational complexity of
the forward model is OðN2Þ.12 A convolutional model has been suggested, which reduces the
computational complexity of from OðN2Þ to OðN logNÞ12 with the cost being if the object-to-
mask distance is too large, or if the required field-of-view for a scene becomes too large, the shift-
invariance assumptions made in the model break down.12 Similarly, if the utilized mask can be
thought of as separable, that is, the 2D mask can be represented as a cross product of two 1D
functions, the computational complexity can be reduced to OðNÞ.13

Xiong14 formulated the forward and inverse problem in the context of the Fourier
Transform.14 Although the computational complexity is not investigated, the formulation is
entirely based on the fast Fourier transform, making the process fast with high regularity and
convergence.14 Due to the complexity and differing nature of the derivation, we refer the reader to
the literature.

With these basic forward problem formulations, we now formulate the standard inverse
problem:

EQ-TARGET;temp:intralink-;e007;117;526x̂ ¼ arg min
x
ky − fhðxÞk2 þ λRðxÞ; (7)

where x̂ is the image estimate, y is the sensor measurements, fhðxÞ is the forward model, λ is a
Lagrange multiplier, and RðxÞ is a regularization function that imposes priors on the estimated
image. If fhðxÞ is linear, then the optimization problem can be made convex with the appropriate
choice of λRðxÞ.1,2,12 Initial solutions were centered on using iterative algorithms to solve convex
problems,11, 12 such as the alternating direction method of multipliers (ADMM),24 or the fast
shrinking iterative shrinking-thresholding algorithm (FISTA).25

A variation of ADMM that arises from the aforementioned Fourier formulation of the
forward and inverse problem,14 referred to as Fourier ADMM, is the key to the approach’s speed
and convergence properties, with the additional property of reducing the effects of diffraction
caused by small holes in the mask, due to the conjugated structure of the algorithm.

In general, these solutions’ reliance on the physical models of light transport used and inabil-
ity to be directly statistically tuned to an application has given rise to data-driven techniques from
the machine learning field to be utilized to improve reconstructions.1,2,21,22

2 Assessment of Lateral Resolution
Lateral resolution is the ability of an imaging system to distinguish between two points in an
object and is a critical parameter that determines the level of detail and clarity in the produced
images. In 2D reconstructive approaches, the output yields natural images; thus, traditional
resolution metrics, such as the Rayleigh or Sparrow criteria,25,26 can be directly utilized on the
recovered reconstructions.

In the case of non-reconstructive lensless SRPE imaging where there is no natural image
corresponding to a scene, other methods must be developed to analyze resolution capabilities.
Section 2.1 explores the principles of lateral resolution specific to non-reconstructive lensless
SRPE imaging systems.

2.1 Principles of Lateral Resolution in Coherent Non-Reconstructive Lensless
Single Random Phase Encoding Imaging

Traditional metrics for evaluating resolution are less applicable in non-reconstructive lensless
SRPE imaging systems where intensity patterns are pseudorandom and spread across the
imaging sensor. A correlation-based criterion is more apt for determining lateral resolution as
the captured pseudo-random intensity patterns at the sensor are not directly interpretable by
humans.8,25,26 This difference in system characteristics is illustrated in the comparison to the
captured intensity patterns of an SRPE and lensed system seen in Fig. 4; in the lensed configu-
ration, the two-point sources at the object plane produce the expected overlapping Airy pat-
tern(s), whereas in the SRPE configuration, the output appears as a pseudorandom intensity
spread across the entire sensor. A characteristic arises due to the random path length variations
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utilized to implement a random phase diffuser. As mentioned earlier in Sec. 1.3, the intensity
pattern captured at the sensor is a pseudo-random intensity pattern or in biological contexts
an OBS.5,7

The approach in Ref. 8 leverages a simulation-based approach to delve into the capabilities
of coherent SRPE systems in comparison to a similar lens-based system. The configuration(s)
and captured intensity of the lens-based and SRPE systems are shown in Fig. 4, where a col-
lection of two-point sources is used as input to each system. In Ref. 8, an actual laser and col-
lection of point sources are not used as results are obtained through simulation. The SRPE
simulation is based on the real parameters of an SRPE system of the form used in Refs. 5 and
7. To provide a comparison with the diffuser configuration, the lens has a focal length defined as

EQ-TARGET;temp:intralink-;e008;114;318fl ¼ z1z2∕ðz1 þ z2Þ: (8)

Figure 5 illustrates the setup necessary to calculate the correlation criterion, where δðx; yÞ
represents an idealized point source in the object plane, δðx − x0; yÞ is a second shifted point

Fig. 4 Comparison of (a) lens-based imaging and (b) lensless SRPE imaging systems.10

Fig. 5 Propagation of light due to two point-apertures at the object plane (a) to the output (image
sensor) and placement of the point sources on the object plane (b).10
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source, and x0 is the lateral separation between the point sources in the object plane. The cor-
relation criterion is calculated by first defining x0 ¼ 0 as the peak correlation, where the two
point sources perfectly overlap; this corresponds to two overlapping point sources on the right
side of Fig. 5. The distance between point sources, x0, is then increased until a certain threshold
of the peak correlation decrease is met, which is defined as the lateral resolution of the system
under the proposed correlation criterion. The threshold of the peak correlation decrease is
selected to be 35%, motivated by the equivalent lensed system used in comparisons having
an Abbe diffraction limit corresponding to ∼35% in the correlation criterion.8

The correlation plot for an SPRE system with parameters, wavelengthλ ¼ 600 nm, object to
diffuser distance z1 ¼ 3.6 mm, diffuser to sensor distance z2 ¼ 26.7 mm, pixel size pα ¼ pβ ¼
0.6 m diffuser size Dζ ¼ Dη ¼ 7.5 mm and sensor size Sα ¼ Sβ ¼ 7.5 mm, is shown in Fig. 6.
In this figure, the correlation drops below the ∼35% threshold at 0.440 m for the base parameters
tested. This is smaller than the pixel size of pα ¼ 0.6 mwith subpixel resolution being possible
due to the spreading of the input scene’s information across the entire sensor by the diffuser as a
white process [3-8], as opposed to focusing the light onto a particular pixel as in the lens-based
imaging case.

2.2 Robustness of Lateral Resolution in Coherent Non-reconstructive Single
Random Phase Encoding

Using the developed correlation criterion, the work in Ref. 8 discussed the lateral resolution of
coherent lensless SRPE systems, specifically showing that the lateral resolution of these systems
is robust to pixel pitch, sensor size, and object-to-diffuser-to-sensor distance. Each of the system
parameters is tested for the system described in Fig. 5 and subsequently varies on the selected
parameter and recalculating the correlation-based criterion as said parameters vary. These param-
eters over which resolution varies are visualized in Fig. 7. The parameters in which resolution
remains relatively constant are visualized in Fig. 8.

Observing Fig. 7, the linear change in resolution one would associate with an increase in
wavelength occurs. Similarly, Fig. 7 shows the distance between the object and the diffuser, and
the physical size of the diffuser plays a significant role in the obtained resolution. This implies
that in SRPE lensless systems, one should utilize larger diffusers whenever possible and keep the
object-to-diffuser distance as small as possible to obtain the finest lateral resolution for a given
SRPE configuration.

Similarly, observing Fig. 8, we see that the resolution is relatively constant with respect to
diffuser-to-image sensor distance and robust to the pixels of the image sensor. In these cases,
resolution varies on the order of nanometers as the number of pixels varies. With respect to pixel

Fig. 6 Lateral resolution of lensless SRPE system estimated by change in correlation as a function
of separation between two point sources (Fig. 5) for initial parameters of the simulation.10
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Fig. 8 Spatial resolution estimate of the lensless SRPE system (see Fig. 4) as a function of
(a) distance from the diffuser to the image sensor, (b) size of the pixels on the image sensor, and
(c) number of pixels on the image sensor.10

Fig. 7 Resolution estimate of the lensless SRPE system (see Fig. 5) as a function of (a) wavelength
of the illuminating light, (b) distance between the object and the diffuser, and (c) size of the diffuser.10
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size, the resolution varies on the order of tens of nanometers. These variations can be regarded as
statistical fluctuations in calculating the correlations.

Thus, when considering the lateral resolution in the system design of an SRPE system, the
object-to-diffuser distance, z1, and wavelength should be made as small as possible, whereas the
diffuser should be made as large as possible. The effect of diffuser-to-sensor distance, z2, pixel
size, and number of pixels has less impact, thus allowing them to be chosen practically.

3 Computational Methods in Lensless Imaging
The convergence of machine learning with lensless imaging technologies has been pivotal for
both reconstruction and non-reconstructive lensless imaging, allowing further enhancement of
image reconstruction quality, resolution, and computation time,1,2,21,22 as well as the facilitation
of direct image classification without the necessity for traditional reconstruction.3–10

As described in Sec. 1.2, techniques such as the ADMM, Fourier-ADMM, or FISTA have
been employed to solve the sparsity-constrained optimization problems inherent in recovering
2D/3D images from single-shot 2D captures.1,2,12–14,24,25 These algorithms iteratively refine the
reconstruction by imposing sparsity and non-negativity constraints, effectively enhancing the
image quality and resolution.

Neural networks have been utilized to decrease reconstruction time and further improve
reconstruction quality and resolution.1,2,21,22 A primary drawback of supervised neural networks
for used reconstruction is that they need ground truth for each training image, potentially com-
plicating data collection setups. Exhaustive coverage of machine learning approaches used to
improve the quality, resolution, and computation time is detailed within the previously mentioned
review(s).1,2

3.1 Role of Machine Learning and Artificial Intelligence in Lensless Random
Phase-Encoded Imaging

Neural networks similarly act as a natural step for use in direct classification. Convolutional
neural networks (CNNs) replace earlier random forest (RF) classifier approaches as they have
been shown to be more robust to noise.4,6 Where RF classifiers use features extracted from data,
CNNs are directly applied to the encoded patterns, directly extracting feature maps utilizing
convolution and various other layer operations, and then classifying the underlying objects
or features within the scene. By training CNNs on a dataset of known encoded patterns, this
method bypasses the traditional reconstruction phase, facilitating real-time analysis and classi-
fication of images based on their unique optical signatures, and increases robustness to noise over
RF classifiers. In such configurations, ground truth is not required; as there is no reconstructive
step, only a label for the captured intensity pattern is necessary. Once data are captured as shown
prior in Fig. 1, data can be processed in a SRPE system via CNN, as seen in Fig. 9.

To bolster the robustness of CNNs even further in these direct analysis tasks, especially
under conditions where obstruction and noise can significantly degrade image quality, the appli-
cation of preprocessing techniques becomes crucial. Among these, local binary pattern (LBP) has

Fig. 9 Data processing for non-reconstructive lensless SRPE imaging.
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emerged as a particularly effective method for enhancing the robustness of CNN-based classi-
fication systems against obstruction and data compression, as well as increasing general system
performance.5,11 The LBP operation consists of first defining a N × N neighborhood size about
some pixel ðx0; y0Þ and comparing every other pixel in the neighborhood according to

EQ-TARGET;temp:intralink-;e009;114;688Sðxi; yiÞ ¼
�
1; if Iðxi; yiÞ ≥ Iðx0; y0Þ
0; if Iðxi; yiÞ < Iðx0; y0Þ : (9)

The center pixel ðx0; y0Þ is assigned a binary number constructed using Sðxi; yiÞ, which is
converted to decimal before the assignment

EQ-TARGET;temp:intralink-;e010;114;626LBPðx0; y0Þ ¼
XN−1

i¼0

Sðxi; yiÞ � 2i: (10)

By applying this process to every pixel in the image, an LBP image is generated, where each
pixel’s value corresponds to its LBP. LBP is used to preprocess the OBS before they are fed into
the CNN, emphasizing texture and structural information, a step taken to reduce the effects of
noise. This preprocessing step proves heavily beneficial in cellular classification, where the fine
details necessary for accurate classification can be obscured. A sample OBS and its calculated
LBP are presented in Fig. 10, where the window size is selected to be 3 × 3.

The integration of LBP with CNNs for direct analysis in lensless imaging systems increases
the robustness of the classification system to data obstruction and compression, ensuring that the
predictive performance remains stable even in less-than-ideal imaging conditions5,11 where sig-
nificant portions of image data are lost. This combined approach streamlines the analysis process,
allowing for real-time or near-real-time processing, which is essential for applications requiring
rapid, onsite imaging processes.

A similar, but distinct approach to using CNNs for the direct classification of captured data is
the use of vision information transformers (ViTs).10,27–29 ViTs are a relatively new computer vision
approach, which does not use convolution to derive feature maps, but attention. Attention is a
mechanism to dynamically weigh the importance of different elements in an input sequence.
Although the specifics of the architectures of ViTs are outside the scope of this review, the general
concept revolves around dividing an image into fixed-size patches; each of which is linearly
embedded into a vector. These vectors, along with positional encodings to retain spatial informa-
tion, are then fed into a standard transformer encoder. The encoder processes these patch embed-
dings through a self-attention mechanism of some form depending on the architecture, with the aim
to increase the model’s global context and relationships across the entire image.10,27–29

A significant conceptual note about ViTs is that the attention mechanism does not have a
built-in assumption of locality as in convolution. This results in a lack of strong local bias and
thus acts as a significantly weaker inductive process.10,27–29 This results in the required size of
data necessary to achieve state-of-the-art CNN-like performance being exceptionally high, with
datasets often being millions or billions of images to achieve state-of-the-art performance.27–29

Fig. 10 (a) RawOBS recorded at the image sensor of the SRPE system for a healthy red blood cell
(RBC) and (b) generated LBP map of panel (a).7
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The relatively large size of datasets is seen when a ViT is applied by Pan et al.10 to the
incoherent reconstruction-free lensless classification problem. The model was pretrained on
ILSVRC-2012, with 1.3 million images and 1000 classes, and in two separate experiments
trained on popular datasets MNIST, cats-vs-dogs (25,000 images), and separately on ∼8000 real
images of fruit, respectfully. Pan reported that when trained on MNIST, with 60,000 train and
10,000 test images, an accuracy of 91.47% is obtained. When trained on cats-vs-dogs (12,500 of
both cats and dogs, split 80% train, 20% test), Pan reported 94.26% accuracy and 0.9664 AUC.10

We note that although these are standardized datasets and experiments are not biological in
nature, the strong results obtained still exemplify the potential of non-reconstructive approaches.

3.2 Automated Cell Identification Using Lensless SRPE Imaging
The automated identification between cell types, i.e., between healthy and diseased cells or spe-
cies types, using lensless SRPE imaging represents a significant breakthrough in biomedical
diagnostics. These approaches initially leveraged statistical features extracted from the OBS for
cell identification and then classified by an RF classifier.4,6 Initial works achieve 97.9% accuracy
when determining between cell types.6 A particular limitation of RF classifiers identified in initial
works is that they are not inherently robust to noise, motivating the use of CNNs and potential
preprocessing of data with LBP.

When distinguishing between horse and cow red blood cells, an SRPE and a shearing digital
holographic microscope6,7 are compared, along with the proposed classification algorithm.
In these experiments, AlexNet is used as the selected CNN architecture to be compared with
RFs, all without LBP preprocessing. In the conducted experiments, the CNN is applied to
an SRPE system and yields 88.99% accuracy and 0.9649 AUC, outperforming the other combi-
nations of classification algorithms and optical methodologies tested.7 In these experiments, the
batch size is 24, the learning rate to 0.0006, and networks are trained for three epochs. Data
collected in these experiments utilizing groups of red blood cells from each respective species
are utilized, with a beam-splitting arm in the experimental setup to manually inspect slide content
during calibration to ensure proper cell content.7

Further experiments were conducted in classifying sickle cell positive and negative red
blood cells and compared the effect of LBP when utilizing CNN and RF classification
algorithms.5 Furthermore, the paper compares various CNN architectures (AlexNet, VGG19,
SqueezeNet, ResNet50) and finds that AlexNet obtains the highest base performance metrics
on the captured data. The CNN-based approach with LBP preprocessing yields 88.70% accuracy
and 0.9622 AUC, outperforming the other tested methods. In these experiments, the networks
were optimized using a grid search to select the best-performing mini-batch size (32, 64, 128, or
256), bias and weight learn rate factor (1, 5, or 10), and optimizer (Adam or SGDM); physical
data consist of 3-μl wet mount slides from sickle cell positive and negative donors.

These advances address significant challenges in automated cell classification, including the
need for compact and stable systems capable of distinguishing among various classes of micro-
scopic objects without complex optics or bulky systems.

4 Conclusions
The progression from utilizing phase masks and diffractive elements to the integration of
sophisticated computational approaches such as machine learning has not only enhanced the
capabilities of lensless imaging systems but also broadened their applicability. By examining
foundational principles, lateral resolution capabilities, and computational approaches, the review
highlights the unique advantages and practical applications of non-reconstruction pseudo-
random phase-encoded lensless imaging in the context of automated cell identification.

Particularly noteworthy is the use of direct classification and analysis of captured data via
CNNs, which has opened new avenues in real-time imaging and diagnostics. The robustness of
CNNs against noise and data obstruction underscores the advancements in making lensless
imaging a viable, efficient solution for biomedical applications.

Automated disease identification, such as sickle cell disease, and the classification of
red blood cells have demonstrated the clinical relevance of lensless SRPE imaging, showcasing
its potential to significantly impact global healthcare, especially in underserved regions.
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The compact, cost-effective nature of these systems, combined with their high accuracy and
rapid processing capabilities, positions lensless imaging as a key technology in the democrati-
zation of healthcare diagnostics.

As we look forward, the continuous innovation in sensor technology, computational algo-
rithms, and the increasing integration of artificial intelligence in lensless imaging promises to
further enhance the resolution, speed, and versatility of these systems. The prospect of integrating
lensless random phase encoding imaging technologies into portable diagnostic devices has the
potential to benefit healthcare delivery, providing rapid, accurate diagnostics at the point of care.
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