PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Wide-Field Infrared Survey Telescope (WFIRST) is a NASA observatory concept, now in phase A study, which is designed to perform wide-field imaging and slitless spectroscopic surveys for dark energy research and other astrophysical studies. It will also perform microlensing surveys to look for distant exoplanets in our galaxy, and direct imaging studies of some of the very nearest exoplanets. The current astrophysics focused telescope assets (AFTA) design of the mission makes use of an existing 2.4-m telescope, which yields enhanced sensitivity and imaging performance in all these science programs. AFTA also enables the addition of a coronagraph instrument (CGI) for direct imaging and spectroscopy of nearby giant exoplanets (including some that were discovered by radial velocity and other methods), and also for observing debris disks around the candidate host stars. This paper outlines the context for the other papers in this special volume on the WFIRST-AFTA CGI, covering the science, design, engineering, and technology development of the observatory and its CGI.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Stellar coronagraphs with a small inner working angle have limited possibilities to detect exoplanets due to the star leakage effect caused by incomplete suppression of the star of finite angular size. We consider an improved instrument for direct imaging of exoplanets: common-path achromatic interfero-coronagraph with variable rotational shear (CP-ARC). CP-ARC reduces the star leakage effect by several orders of magnitude (with small angles of rotational shear relative to a fixed angle of 180 deg) with telescope size more than 1 m. Operation capacity of CP-ARC was experimentally verified by laser light nulling and white light nulling with lab prototype treated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The WFIRST-AFTA 2.37 m telescope will provide the opportunity to host a coronagraph for the imaging and spectroscopy of planets and disks in the next decade. The telescope, however, is not ideal, given its obscured aperture. Only recently have coronagraph designs been thoroughly investigated that can efficiently work with this configuration. Three coronagraph designs, the hybrid Lyot, shaped pupil, and phase-induced amplitude apodization complex mask coronagraph have been selected for further development by the Astrophysics Focused Telescope Asset project. Real-world testbed demonstrations of these have just begun, so for now, the most reliable means of evaluating their potential performance comes from numerical modeling incorporating diffraction propagation, realistic system models, and simulated wavefront sensing and control. Here, we present the methods of performance evaluation and results for the current coronagraph designs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The coronagraph instrument on the Wide-Field Infrared Survey Telescope-Astrophysics-Focused Telescope Asset (WFIRST-AFTA) mission study has two coronagraphic architectures, shaped pupil and hybrid Lyot, which may be interchanged for use in different observing scenarios. Each architecture relies on newly developed mask components to function in the presence of the AFTA aperture, and so both must be matured to a high technology readiness level in advance of the mission. A series of milestones were set to track the development of the technologies required for the instrument; we report on completion of WFIRST-AFTA coronagraph milestone 2—a narrowband 10−8 contrast test with static aberrations for the shaped pupil—and the plans for the upcoming broadband coronagraph milestone 5.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
NASA WFIRST-AFTA mission study includes a coronagraph instrument to find and characterize exoplanets. Various types of masks could be employed to suppress the host starlight to about 10−9 level contrast over a broad spectrum to enable the coronagraph mission objectives. Such masks for high-contrast internal coronagraphic imaging require various fabrication technologies to meet a wide range of specifications, including precise shapes, micron scale island features, ultralow reflectivity regions, uniformity, wave front quality, and achromaticity. We present the approaches employed at JPL to produce pupil plane and image plane coronagraph masks by combining electron beam, deep reactive ion etching, and black silicon technologies with illustrative examples of each, highlighting milestone accomplishments from the High Contrast Imaging Testbed at JPL and from the High Contrast Imaging Lab at Princeton University.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present and discuss the design details of an extensible, modular, open-source software framework called EXOSIMS (Exoplanet Open-Source Imaging Mission Simulator), which creates end-to-end simulations of space-based exoplanet imaging missions. We motivate the development and baseline implementation of the component parts of this software with models of the wide-field infrared survey telescope-astrophysics focused telescope assets (WFIRST-AFTA) coronagraph and present initial results of mission simulations for various iterations of the WFIRST-AFTA coronagraph design. We present and discuss two sets of simulations. The first compares the science yield of completely different instruments in the form of early competing coronagraph designs for WFIRST-AFTA. The second set of simulations evaluates the effects of different operating assumptions, specifically the assumed postprocessing capabilities and telescope vibration levels. We discuss how these results can guide further instrument development and the expected evolution of science yields.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Wide Field InfraRed Survey Telescope-Astrophysics Focused Telescope Asset (WFIRST-AFTA) mission is a 2.4-m class space telescope that will be used across a swath of astrophysical research domains. JPL will provide a high-contrast imaging coronagraph instrument—one of two major astronomical instruments. In order to achieve the low noise performance required to detect planets under extremely low flux conditions, the electron multiplying charge-coupled device (EMCCD) has been baselined for both of the coronagraph’s sensors—the imaging camera and integral field spectrograph. JPL has established an EMCCD test laboratory in order to advance EMCCD maturity to technology readiness level-6. This plan incorporates full sensor characterization, including read noise, dark current, and clock-induced charge. In addition, by considering the unique challenges of the WFIRST space environment, degradation to the sensor’s charge transfer efficiency will be assessed, as a result of damage from high-energy particles such as protons, electrons, and cosmic rays. Science-grade CCD201-20 EMCCDs have been irradiated to a proton fluence that reflects the projected WFIRST orbit. Performance degradation due to radiation displacement damage is reported, which is the first such study for a CCD201-20 that replicates the WFIRST conditions. In addition, techniques intended to identify and mitigate radiation-induced electron trapping, such as trap pumping, custom clocking, and thermal cycling, are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The new frontier in the quest for the highest contrast levels in the focal plane of a coronagraph is now the correction of the large diffraction artifacts introduced at the science camera by apertures of increasing complexity. Indeed, the future generation of space- and ground-based coronagraphic instruments will be mounted on on-axis and/or segmented telescopes; the design of coronagraphic instruments for such observatories is currently a domain undergoing rapid progress. One approach consists of using two sequential deformable mirrors (DMs) to correct for aberrations introduced by secondary mirror structures and segmentation of the primary mirror. The coronagraph for the WFIRST-AFTA mission will be the first of such instruments in space with a two-DM wavefront control system. Regardless of the control algorithm for these multiple DMs, they will have to rely on quick and accurate simulation of the propagation effects introduced by the out-of-pupil surface. In the first part of this paper, we present the analytical description of the different approximations to simulate these propagation effects. In Appendix A, we prove analytically that in the special case of surfaces inducing a converging beam, the Fresnel method yields high fidelity for simulations of these effects. We provide numerical simulations showing this effect. In the second part, we use these tools in the framework of the active compensation of aperture discontinuities (ACAD) technique applied to pupil geometries similar to WFIRST-AFTA. We present these simulations in the context of the optical layout of the high-contrast imager for complex aperture telescopes, which will test ACAD on a optical bench. The results of this analysis show that using the ACAD method, an apodized pupil Lyot coronagraph, and the performance of our current DMs, we are able to obtain, in numerical simulations, a dark hole with a WFIRST-AFTA-like. Our numerical simulation shows that we can obtain contrast better than 2×10−9 in monochromatic light and better than 3×10−8 with 10% bandwidth between 5 and 14 λ/D.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Coronagraphy is a very promising method for directly imaging exoplanets, but the performance of a coronagraph is highly sensitive to quasi-static aberrations within the telescope. The resultant speckles are suppressed in the final focal plane using a wavefront control system that estimates the field at the final focal plane to avoid any noncommon path error. This requires a set of probe images that modulate the field so that it may be estimated. With an estimate of the focal plane electric field, a control law is defined to suppress the speckle field so that the planet can be imaged. Characterizing the planet requires that the speckle field be suppressed simultaneously over the bandpass of interest. The choice of control law, bandpass, estimator, and probing methodology has implications in the control solutions and contrast performance. Here, we compare wavefront probing, estimation, and control algorithms, and describe their practical implementation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
TOPICS: Coronagraphy, James Webb Space Telescope, Point spread functions, Space telescopes, Telescopes, Infrared telescopes, Stars, Sensors, Space operations, Astronomical telescopes
The coronagraphic instrument (CGI) currently proposed for the Wide-Field Infrared Survey Telescope–Astrophysics Focused Telescope Assets (WFIRST-AFTA) mission will be the first example of a space-based coronagraph optimized for extremely high contrasts that are required for the direct imaging of exoplanets reflecting the light of their host star. While the design of this instrument is still in progress, this early stage of development is a particularly beneficial time to consider the operation of such an instrument. We review current or planned operations on the Hubble Space Telescope and the James Webb Space Telescope with a focus on which operational aspects will have relevance to the planned WFIRST-AFTA CGI. We identify five key aspects of operations that will require attention: (1) detector health and evolution, (2) wavefront control, (3) observing strategies/postprocessing, (4) astrometric precision/target acquisition, and (5) polarimetry. We make suggestions on a path forward for each of these items.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We propose to use an extremely unbalanced interferometer (EUI) as a wavefront correcting input to a stellar coronagraph for direct exoplanet observation. Since wavefront error causes incomplete suppression of stellar light, an EUI aims to precisely correct the wavefront incident on the coronagraph to a level better than λ/5000 in the visible wavelength range. Compared to the previous unbalanced interferometer, which incorporated a nulling function, the proposed EUI does not introduce the nulling function. EUI does not use a precise deformable mirror. It increases the accuracy of a wavefront control effectively because of the coherent summation with an amplitude imbalance. It enables obtaining the desirable 10−9 coronagraphic contrast for Earth-like exoplanet imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Coronagraphs of the apodized pupil and shaped pupil varieties use the Fraunhofer diffraction properties of amplitude masks to create regions of high contrast in the vicinity of a target star. Here we present a hybrid coronagraph architecture in which a binary, hard-edged shaped pupil mask replaces the gray, smooth apodizer of the apodized pupil Lyot coronagraph (APLC). For any contrast and bandwidth goal in this configuration, as long as the prescribed region of contrast is restricted to a finite area in the image, a shaped pupil is the apodizer with the highest transmission. We relate the starlight cancellation mechanism to that of the conventional APLC. We introduce a new class of solutions in which the amplitude profile of the Lyot stop, instead of being fixed as a padded replica of the telescope aperture, is jointly optimized with the apodizer. Finally, we describe shaped pupil Lyot coronagraph (SPLC) designs for the baseline architecture of the Wide-Field Infrared Survey Telescope–Astrophysics Focused Telescope Assets (WFIRST-AFTA) coronagraph. These SPLCs help to enable two scientific objectives of the WFIRST-AFTA mission: (1) broadband spectroscopy to characterize exoplanet atmospheres in reflected starlight and (2) debris disk imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The prospect of extreme high-contrast astronomical imaging from space has inspired developments of new coronagraph methods for exoplanet imaging and spectroscopy. However, the requisite imaging contrast, at levels of 1 billion to one or better for the direct imaging of cool mature exoplanets in reflected visible starlight, leads to challenging new requirements on the stability and control of the optical wavefront, at levels currently beyond the reach of ground-based telescopes. We review the design, performance, and science prospects for the hybrid Lyot coronagraph (HLC) on the WFIRST-AFTA telescope. Together with a pair of deformable mirrors for active wavefront control, the HLC creates a full 360-deg high-contrast dark field of view at 10−9 contrast levels or better, extending to within angular separations of 3 λ0/D from the central star, over spectral bandwidths of 10% or more.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
This work describes the fabrication, characterization, and modeling of a second-generation occulting mask for a phase-induced amplitude apodization complex mask coronagraph, designed for use on the WFIRST-AFTA mission. The mask has many small features (∼micron lateral scales) and was fabricated at the Jet Propulsion Laboratory Microdevices Laboratory, then characterized using a scanning electron microscope, atomic force microscope, and optical interferometric microscope. The measured fabrication errors were then fed to a wavefront control model which predicts the contrast performance of a full coronagraph. The expected coronagraphic performance using this mask is consistent with observing ∼15 planetary targets with WFIRST-AFTA in a reasonable time (<1 day/target).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The contrast and angular resolution required to directly image and characterize mature exoplanetary systems place stringent requirements on the space-based telescopes and starlight suppression systems needed to study spatial distributions of debris disks, exozodiacal dust, and individual planets at multiple epochs in their orbits. A nulling interferometer (nuller) is a coronagraphic suppression system that can be used with all telescope types, including those with obscured and segmented apertures envisioned for upcoming and future observatories. One of the challenges for detection and characterization of exoplanetary signals is achieving high contrast with broad spectral coverage. This work presents design concepts for broadband nulling over four parallel ∼20% bandpasses spanning the visible spectrum. Contrast-limiting effects of stellar angular extent, residual chromaticity of broadband phase shifters, and aperture diffraction are considered to reach simultaneous ≲2×10−8 contrast over separations spanning 0.2 to 0.9 arc sec for a 2.4-m telescope observing a Sun-like star at 10 pc. With added dark hole wavefront control and postprocessing point spread function subtraction techniques to further reduce scattered starlight, such a system could be capable of detecting the very the nearest Earth-like exoplanets and spectral characterization of several nearby extrasolar gas giants.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A framework for evaluating the science yield of a coronagraph in the presence of a variety of line-of-sight jitter environments is described and the use of a tip-tilt threshold for improving science yield is proposed. The current expectations of the WFIRST-AFTA mission are used for specific distributions of line-of-sight jitter, including the current expectations for tip-tilt correction using a low-order wavefront sensor/control. The effect of the residual tip-tilt on the phase-induced amplitude apodization complex mask coronagraph (PIAACMC) architecture is considered, because the performance of the PIAACMC architecture is expected to be dominated by tip-tilt sensitivity, implying that this treatment has a large impact on the final science yield. The most important outcomes of this study are that the rms residual tip-tilt expected after correction is 0.6 mas rms/axis and that by eliminating some science frames during analysis through a tip-tilt threshold, the number of planets observable increases by ∼25% for the 550-nm imaging channel. The number of known radial velocity planets expected to be observed ranges from 29 to 78 at 550 nm and from 9 to 12 at 890 nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
For imaging faint exoplanets and disks, a coronagraph-equipped observatory needs focal plane wavefront correction to recover high contrast. The most efficient correction methods iteratively estimate the stellar electric field and suppress it with active optics. The estimation requires several images from the science camera per iteration. To maximize the science yield, it is desirable both to have fast wavefront correction and to utilize all the correction images for science target detection. Exoplanets and disks are incoherent with their stars, so a nonlinear estimator is required to estimate both the incoherent intensity and the stellar electric field. Such techniques assume a high level of stability found only on space-based observatories and possibly ground-based telescopes with extreme adaptive optics. In this paper, we implement a nonlinear estimator, the iterated extended Kalman filter (IEKF), to enable fast wavefront correction and a recursive, nearly-optimal estimate of the incoherent light. In Princeton’s High Contrast Imaging Laboratory, we demonstrate that the IEKF allows wavefront correction at least as fast as with a Kalman filter and provides the most accurate detection of a faint companion. The nonlinear IEKF formalism allows us to pursue other strategies such as parameter estimation to improve wavefront correction.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The phase-induced amplitude apodization complex mask coronagraph (PIAACMC) provides an efficient way to control diffraction propagation effects caused by the central obstruction/segmented mirrors of the telescope. PIAACMC can be optimized in a way that takes into account both chromatic diffraction effects caused by the telescope obstructed aperture and the tip-tilt sensitivity of the coronagraph. As a result, unlike classic phase-induced amplitude apodization (PIAA), the PIAACMC mirror shapes are often slightly asymmetric even for an on-axis configuration and require more care in calculating off-axis shapes when an off-axis configuration is preferred. A method to design off-axis PIAA mirror shapes given an on-axis mirror design is presented. The algorithm is based on geometrical ray tracing and is able to calculate off-axis PIAA mirror shapes for an arbitrary geometry of the input and output beams. The method is demonstrated using the third generation PIAACMC design for WFIRST-AFTA telescope. Geometrical optics design issues related to the off-axis diffraction propagation effects are also discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Hybrid Lyot coronagraph (HLC) is one of the two operating modes of the WFIRST-AFTA coronagraph instrument. It produces starlight suppression over the full 360-deg annular region and thus is particularly suitable to improve the discovery space around WFIRST-AFTA targets. Since being selected by the National Aeronautics and Space Administration in December 2013, the coronagraph technology is being matured to technology readiness level 5 by September 2016. We present the progress of HLC key component fabrication and testbed demonstrations with the WFIRST-AFTA pupil. For the first time, a circular HLC occulter mask consisting of metal and dielectric layers is fabricated and characterized. Wavefront control using two deformable mirrors is successfully demonstrated in a vacuum testbed with narrowband light (<1-nm bandwidth at 516 nm) to obtain repeatable convergence below 8×10−9 mean contrast in the 360-deg dark hole with a working angle between 3λ/D and 9λ/D with arbitrary polarization. We detail the hardware and software used in the testbed, the results, and the associated analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The coronagraph instrument (CGI) on the Wide-Field Infrared Survey Telescope will directly image and spectrally characterize planets and circumstellar disks around nearby stars. Here we estimate the expected science yield of the CGI for known radial-velocity (RV) planets and potential circumstellar disks. The science return is estimated for three types of coronagraphs: the hybrid Lyot and shaped pupil are the currently planned designs, and the phase-induced amplitude apodizing complex mask coronagraph is the backup design. We compare the potential performance of each type for imaging as well as spectroscopy. We find that the RV targets can be imaged in sufficient numbers to produce substantial advances in the science of nearby exoplanets. To illustrate the potential for circumstellar disk detections, we estimate the brightness of zodiacal-type disks, which could be detected simultaneously during RV planet observations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
To maintain the required Wide-Field Infrared Survey Telescope (WFIRST) coronagraph performance in a realistic space environment, a low-order wavefront sensing and control (LOWFS/C) subsystem is necessary. The LOWFS/C uses the rejected stellar light from the coronagraph to sense and suppress the telescope pointing errors as well as low-order wavefront errors (WFEs) due to changes in thermal loading of the telescope and the rest of the observatory. We will present a conceptual design of a LOWFS/C subsystem for the WFIRST-AFTA coronagraph. This LOWFS/C uses a Zernike phase contrast wavefront sensor (ZWFS) with a phase shifting disk combined with the stellar light rejecting occulting masks, a key concept to minimize the noncommon path error. We will present our analysis of the sensor performance and evaluate the performance of the line-of-sight jitter suppression loop, as well as the low-order WFE correction loop with a deformable mirror on the coronagraph. We will also report the LOWFS/C testbed design and the preliminary in-air test results, which show a very promising performance of the ZWFS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The capabilities of a high (∼10−9 resel−1) contrast narrow-field coronagraphic instrument (CGI) on a space-based WFIRST-C or probe-class EXO-C/S mission are particularly and importantly germane to symbiotic studies of the systems of circumstellar material from which planets have emerged and interact with throughout their lifetimes. The small particle populations in “disks” of co-orbiting materials can trace the presence of planets through dynamical interactions that perturb the spatial distribution of light-scattering debris, which is detectable at visible wavelengths and resolvable with a WFIRST-C or EXO-S/C CGI. Herein, we (1) present the scientific case to study the formation, evolution, architectures, diversity, and properties of the material in the planet-hosting regions of nearby stars; (2) discuss how a CGI under current conception can uniquely inform and contribute to those investigations; (3) consider the applicability of CGI-anticipated performance for circumstellar debris system studies; (4) investigate, through WFIRST CGI image simulations, the anticipated interpretive fidelity and metrical results from specific representative zodiacal debris disk observations; (5) comment on specific observational modes and methods germane to and augmenting circumstellar debris system observations; and (6) present a case for augmenting future CGI instrumentation with the capability to obtain full linear-Stokes imaging polarimetery, which greatly benefits characterization of the material properties of circumstellar dust and exoplanet atmospheres (discussed in other studies).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Green Bank Telescope is a 100-m aperture single-dish radio telescope. For high-frequency observations (above 100 GHz), it needs a tracking error below 1.5 arc sec rms. The present system has a tracking error of 1 arc sec rms for very low wind speeds of ≤ 1 m/s, which increases well above 1.5 arc sec for wind speeds above 4 m/s. Hence, improvements in the servo control system are needed to achieve pointing accuracy goals for high-frequency observations. As a first step toward this goal, it is necessary to evaluate the dynamic response of the present servo system and the telescope, which forms a large flexible structure. We derive the model of the telescope dynamics using finite element analysis data. This model is further tuned and validated using system identification experiments performed on the telescope. A reduced model is developed for controller design by using modes with the highest Hankel singular value for frequencies up to 2 Hz. We quantify the uncertainty in azimuth axis dynamics with a change in elevation angle by varying the zeros of the model. We discuss the effects of transient response, wind disturbances, and azimuth track joint disturbances on telescope tracking performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We fabricated x-ray mirrors from carbon-fiber-reinforced plastic with a tightly nested design for x-ray satellites, using a replication method for the surfaces. We studied the effects of print-through on the mirror surface as a function of curing temperature. With room temperature curing, the root-mean-square value of the surface error was 0.8 nm. The reflectivity was measured using 8-keV x-rays, and the roughness was calculated as 0.5 nm by model fitting—comparable to that of the ASTRO-H/HXT mirror. We verified the long-term stability of the mirror surface over 6 months. We fabricated Wolter type-I quadrant-shell mirrors with a diameter of 200 mm and performed x-ray measurements at BL20B2 in the SPring-8 synchrotron radiation facility. We obtained reflection images of the mirrors using a 20-keV x-ray spot beam with a slit size of 10×1mm in the radial and circumferential directions, respectively. The averaged half-power diameter (HPD) of the images in one mirror was 1.2 arc min in the circumferential center of the mirror and 3.0 arc min at the edge. In the spot images with a smaller slit size of 10×0.2 mm, we achieved an HPD of 0.38 arc min in the best case.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Intensity interferometry (II) is an alternate form of creating images of distant objects. It is significantly less sensitive to atmospheric distortions and aberrations of telescope surfaces than conventional amplitude-based imaging. The deficiencies of II can be overcome as photodetectors’ read-out rates are becoming faster and computers more powerful. In recognition of the possibility of very large space-based imaging systems, this paper investigates how the deformation of a large, thin optical surface would influence the accuracy of II. Based on the theoretical foundation of II, an optical ray-tracing algorithm was used to examine how the statistics of a photon stream changes from the source to the detector. Ray-tracing and finite element analyses of the structure were thereafter integrated to quantify how the correlation of the intensity field changes as the reflective structure deforms. Varying the positions of the detector from the focal plane and the surface profile of the mirror provided an understanding and quantification of how the various scenarios affect the statistics of the detected light and the correlation measurement. This research and analysis provide the means to quantify how structural perturbations of focal mirrors affect the statistics of photon stream detections inherent in II instrumentation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Imaging, Spectroscopic, High-Contrast, and Interferometric Instrumentation
Consistent improvements in the design and fabrication of thin-foil, epoxy-replicated x-ray mirrors for astronomical telescopes have yielded increasingly higher quality and more precise astrophysical data. The Neutron Star Interior Composition Explorer (NICER) x-ray timing mission optics continues this tradition and introduces design elements that promise even more accurate measurements and precise astrophysical parameters. The singly reflecting concentrators have a curved axial profile to improve photon concentration and a sturdy full shell structure for enhanced module stability. These design elements introduced the challenge of reliably forming mirror substrates at an acceptable production rate. By developing a technique using heat shrink tape to compress and conform thin aluminum mirror substrates to shaping mandrels, production rate improved with successful fabrication. The technique’s efficiency was analyzed by measuring hundreds of substrate profiles postforming, performance testing completely assembled concentrators composed of every size substrate, and comparing the results to simulated fabrication scenarios. On average, the profiles were copied within 4.6±3.7%. These measurements and the overall success of NICER’s optics, via ground calibration, have shown that the heat-shrink tape method is reliable, repeatable, and could be used in future missions to increase production rate and improve performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
IO:I is a new instrument that has recently been commissioned for the Liverpool Telescope, extending current imaging capabilities beyond the optical and into the near-infrared. Cost has been minimized by the use of a previously decommissioned instrument’s cryostat as the base for a prototype and retrofitting it with Teledyne’s 1.7-μm cutoff Hawaii-2RG HgCdTe detector, SIDECAR ASIC controller, and JADE2 interface card. The mechanical, electronic, and cryogenic aspects of the cryostat retrofitting process will be reviewed together with a description of the software/hardware setup. This is followed by a discussion of the results derived from characterization tests, including measurements of read noise, conversion gain, full well depth, and linearity. The paper closes with a brief overview of the autonomous data reduction process and the presentation of results from photometric testing conducted on on-sky, pipeline processed data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Speedster-EXD is a new 64×64 pixel2, 40-μm pixel pitch, 100-μm depletion depth hybrid CMOS x-ray detector with the capability of reading out only those pixels containing event charge, thus enabling fast effective frame rates. A global charge threshold can be specified, and pixels containing charge above this threshold are flagged and read out. The Speedster detector has also been designed with other advanced in-pixel features to improve performance, including a low-noise, high-gain capacitive transimpedance amplifier that eliminates interpixel capacitance crosstalk (IPC), and in-pixel correlated double sampling subtraction to reduce reset noise. We measure the best energy resolution on the Speedster-EXD detector to be 206 eV (3.5%) at 5.89 keV and 172 eV (10.0%) at 1.49 keV. The average IPC to the four adjacent pixels is measured to be 0.25%±0.2% (i.e., consistent with zero). The pixel-to-pixel gain variation is measured to be 0.80%±0.03%, and a Monte Carlo simulation is applied to better characterize the contributions to the energy resolution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.