We describe the improvements of the content-based image retrieval (CBIR) system using a fuzzy class membership for the natural-color images. The fuzzy class membership-based retrieval (CMR) framework has shown promising improvements on texture databases by exploiting confidence in classification using a multilayer perceptron (MLP). CMR is known to improve the average precision of retrieval along with modest variance, and the framework is not restricted to any particular feature set. However, their efficacy is not known for natural colored images. In the proposed approach, we have added a new classifier, radial basis function network, in place of MLP in the CMR framework. We show a way to adapt a new classifier in the fuzzy CMR framework. Comparison with state-of-the-art CBIR systems shows that the proposed modifications have an edge over its competition in terms of precision for four popular image databases: viz. Corel-1k, Corel-5k, Corel-10k, and CIFAR-10. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
Databases
Image retrieval
Cardiovascular magnetic resonance imaging
Feature extraction
Fuzzy logic
Image classification
Neurons