The resonant micro optical gyro (RMOG) is considered to be a unique type of optical gyroscope with great application prospects because of its high precision and miniaturization. However, high precision RMOG systems are generally required to have the narrow full width at half maximum (FWHM) of the resonance spectrum. The dynamic range of the open-loop detection method based on FWHM demodulation output is correspondingly narrowed. Therefore, we propose a triple closed-loop control system based on optoelectronic hybrid feedback in this work. First, the sawtooth wave feedback loop is used to the track the angular velocity, which reduces the influence of the nonlinear error and improves the dynamic range of the system. Second, the laser frequency locking loop (LFLL) achieves frequency locking by locking the laser’s output frequency at the static resonance frequency of the waveguide ring resonance. Third, the light intensity feedback loop is introduced to reduce the optical Kerr noise by minimizing the light intensity difference between the clockwise (CW) and counterclockwise (CCW) directions. Experimental results show that, when using this method, the dynamic range of the gyroscope system is increased from |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
Gyroscopes
Laser frequency
Demodulation
Backscatter
Modulation frequency
Phase modulation
Modulation