Front Matter: Volume 9884
Contents

ix Authors
xiii Conference Committee

LIGHT HARVESTING AND FREQUENCY CONVERSION

<table>
<thead>
<tr>
<th>Paper</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9884 08</td>
<td>Subwavelength resonant antennas enhancing electromagnetic energy harvesting</td>
<td>9884-9</td>
</tr>
<tr>
<td>9884 09</td>
<td>Mode matching in high non linear susceptibility metamaterials</td>
<td>9884-10</td>
</tr>
</tbody>
</table>

CAVITIES AND WAVEGUIDES

<table>
<thead>
<tr>
<th>Paper</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9884 0B</td>
<td>How mesoscale lasers can answer fundamental questions related to nanolasers (Invited Paper)</td>
<td>9884-12</td>
</tr>
<tr>
<td>9884 0C</td>
<td>Nanoscale photonics using coupled hybrid plasmonic architectures (Invited Paper)</td>
<td>9884-13</td>
</tr>
</tbody>
</table>

QUANTUM AND NONLINEAR OPTICS IN NANOSTRUCTURES I

<table>
<thead>
<tr>
<th>Paper</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9884 0I</td>
<td>Band diagram of strained graphene nanoribbons</td>
<td>9884-19</td>
</tr>
<tr>
<td>9884 0J</td>
<td>Improved nonlinear plasmonic slot waveguide: a full study</td>
<td>9884-20</td>
</tr>
</tbody>
</table>

QUANTUM AND NONLINEAR OPTICS IN NANOSTRUCTURES II

<table>
<thead>
<tr>
<th>Paper</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9884 0L</td>
<td>Architecture, development and implementation of a SWIR to visible integrated up-conversion imaging device (Invited Paper)</td>
<td>9884-23</td>
</tr>
<tr>
<td>9884 0N</td>
<td>On the emergence of Raman signals characterizing multicenter nanoscale interactions</td>
<td>9884-25</td>
</tr>
</tbody>
</table>

CONTROL OF NANOSCALE OPTICAL AND ELECTRONIC PROCESSES

<table>
<thead>
<tr>
<th>Paper</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9884 0O</td>
<td>Ultrafast excitonic and charge transfer dynamics in nanostructured organic polymer materials (Keynote Paper)</td>
<td>9884-26</td>
</tr>
<tr>
<td>9884 0P</td>
<td>Enhancing Förster nonradiative energy transfer via plasmon interaction (Invited Paper)</td>
<td>9884-27</td>
</tr>
</tbody>
</table>
SURFACE PLASMONS AND DEVICES

9884 10 Radiation direction control by optical slot antenna integrated with plasmonic waveguide [9884-37]

9884 12 Plasmonic hierarchical nanostructures with cascaded field enhancement and their SERS applications [9884-39]

NANOMICROSCOPY

9884 13 Monitoring excimer formation of perylene dye molecules within PMMA-based nanofiber via FLIM method [9884-41]

PLASMONICS AND SURFACE NANOSTRUCTURES

9884 1E Plasmonics in the UV range with Rhodium nanocubes [9884-52]

STRUCTURED LIGHT

9884 1I A subwavelength Stokes polarimeter on a silicon chip [9884-57]

9884 1J Laser controlled deposition of metal microstructures via nondiffracting Bessel beam illumination [9884-58]

FUNCTIONALIZED SENSING

9884 1T Long-term functionalization of optical resonance sensor spots [9884-66]

9884 1U Drastic difference in luminescence stability between amine- and thiol-capped quantum dots treated with CO₂ [9884-67]

POSTER SESSION

9884 1W Photo-induced brightening and broadening effects of gold quantum clusters [9884-70]

9884 1Y Using a plasmonic lens to control the emission of electrically excited light [9884-72]

9884 20 Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides [9884-74]

9884 21 Exciton and multi-exciton dynamics in CdSe/Cd₁₋ₓZnₓS quantum dots [9884-75]

9884 22 Fluorescence quantum yield measurement in nanoparticle-fluorophore systems by thermal lens spectroscopy [9884-76]
CdTe quantum dots: aqueous phase synthesis, stability studies and protein conjugation for development of biosensors [9884-77]

Laser-induced synthesis of a nanostructured polymer-like metal-carbon complexes [9884-79]

The effect of the size of Au nanorods on random laser action in a disordered media of ethylene glycol doped with Rh6G dye [9884-80]

Optical diagnostics of surfaces of single evaporating liquid microdroplet of solutions and suspensions (Best Student Paper Award) [9884-81]

Development of cadmium-free quantum dot for intracellular labelling through electroporation or lipid-calcium-phosphate [9884-82]

Grating based hybrid plasmonic waveguide for subwavelength optical confinement with low loss [9884-84]

Enhanced second-harmonic generation driven from magnetic dipole resonance in AlGaAs nanoantennas [9884-85]

Deterministic embedding of a single gold nanoparticle into polymeric microstructures by direct laser writing technique [9884-86]

Proposed new approach to design all optical AND gate using plasmonic based Mach-Zehnder interferometer for high speed communication [9884-87]

Sensing (un)binding events via surface plasmons: effects of resonator geometry [9884-89]

Study on structural and optical properties of TiO2 ALD coated silicon nanopillars [9884-91]

Large area gold coated nano-needles fabricated by proximity mask aligner lithography for plasmonic AR-structures [9884-92]

Infrared reduction, an efficient method to control the non-linear optical property of graphene oxide in femtosecond regime [9884-95]

Effect of the particle shape on the optical properties of black carbon aggregates [9884-96]

Interpretation of the effect of dielectric spacer on the ZnO/Ag structure luminescence intensity [9884-98]

Autocorrelation and relaxation time measurements on metal oxide core: dielectric shell beads in an optical trap [9884-99]

Efficient carrier transfer from graphene quantum dots to GaN epilayers [9884-101]

Sensing characteristics of plasmonic structure based on transferring process of polystyrene nano-beads [9884-102]

Fabrication and characterization of the noble metal nanostructures on the GaAs surface [9884-109]
Quantitative comparison of measurement methods for the evaluation of micro- and nanostructures written with 2PP [9884-110]

Aggregation of quantum dots in hybrid structures based on TiO2 nanoparticles [9884-112]

Circular dichroism spectroscopy of complexes of semiconductor quantum dots with chlorin e6 [9884-114]

Quantum theory for the nanoscale propagation of light through stacked thin film layers [9884-115]

New design of InGaAs guided-mode resonance photodiode for SWIR low dark current imaging [9884-116]

Plasmonic coupling between metallized fiber tips with sub-wavelength open apertures [9884-118]

Recent progress in plasmonic colour filters for image sensor and multispectral applications [9884-119]

Using femtosecond lasers to modify sizes of gold nanoparticles [9884-120]

Influence of the QD luminescence quantum yield on photocurrent in QD/graphene hybrid structures [9884-121]

Enhanced fluorescence and aggregation of rhodamine molecules dispersed in a thin polymer film in the presence of plasmonic nanostructures [9884-123]

Surface plasmons excited by the photoluminescence of organic nanofibers in hybrid plasmonic systems [9884-124]

Dynamic photophoresis-based optical trapping using a spatial light modulator [9884-125]

Luminescence kinetics of the radiative transitions in quantum dots CdSe/ZnS in the near field of plasmonic nanoparticles [9884-126]

FRET efficiency in surface complexes of CdSe/ZnS quantum dots with azo-dyes [9884-127]

Modulation of extraordinary optical transmission through nanohole arrays using ultrashort laser pulses [9884-128]

Induced modulation instability of surface plasmon polaritons in a layer structure of subwavelength thickness [9884-129]

Formation of quasiperiodic bimetal thin films with controlled optical and electrical properties [9884-130]

Two-level quantum dot susceptibility and polarization in the presence of Coulomb correlations [9884-131]

Controllable photo-brightening/photo-darkening of semiconductor quantum dots under laser irradiation [9884-132]
Self-organization and photo-induced formation of cyanine dye aggregates on the plasmonic Ag nanoparticles [9884-136]

Plasma model of superconducting crystals [9884-138]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abdulhalim, Ibrahim, 0L
Acikgoz, Sabriye, 13
Adam, Jost, 3D
Alcaraz de la Osa, R., 1E
Almeida de Matos, Ricardo, 39
Ananthamurthy, Sharath, 2P
Andrews, David L., 0N, 34
Annas, Kirill I., 3G
Antosiewicz, Tomasz J., 2F
Arakelian, S., 25, 3J
Archer, Justice, 27
Arseyev, Petr I., 3K
Bache, Morten, 20
Bai, Benfeng, 12
Bakanov, Aleksei G., 3F
Baranov, Alexsander V., 31, 33, 3A, 3G
Baranov, Mikhail A., 3A
Barreda, Á. I., 1E
Bhaktha, S. B. N., 2L
Bhattacharya, S., 2L
Bhattacharya, Sarbari, 2P
Boer-Duchemin, Elizabeth, 1Y
Bonilla, Luis, 0I
Borse, Vivek, 23
Bouchon, Patrick, 09
Bourgin, Yannick, 21
Bozio, Renato, 21
Bradley, A. L., 0P
Bradshaw, David S., 0N
Brewer, Jonathan, 3D
Briskina, Ch. M., 2O
Burghardt, Irene, 0O
Cao, Shuiyan, 1Y
Carletti, Luca, 2B
Chauvet, Mathieu, 0J
Chistyakov, Alexander A., 3L
Choi, Young-Wan, 2S
Choubey, Bhaskar, 38
Claudio, Virginia, 2F
Cleary, Olan, 31
Colas des Francs, Gérard, 37
Collins, Steve, 38
Courrol, Lilia Coronato, 39
Cumming, David, 38
da Silva Cordeiro, Thiago, 39
Danckaert, Jan, 0B
Dannberg, Peter, 2I
Das, A. C., 2L
Datta, P. K., 2L
De Angelis, Costantino, 2B
Decombe, Jean-Baptiste, 37
Dehade, Robin, 3H
Demir, Mustafa Muamer, 13
Derkachov, Gennadij, 27
Drampyan, Rafael, 1J
Drezet, Aurélien, 1Y
Dujardin, Gérard, 1Y
Dupuis, Christophe, 35
Eisenbrandt, Pierre, 0O
Elsawy, Mahmoud M. R., 0J
Espinosa Soria, A., 1I
Everitt, H. O., 1E
Fedorov, Anatoly V., 31, 33, 3A, 3G
Feng, Guoying, 26
Ferreira, M., 22
Fick, Jochen, 37
Finkelstein, G., 1E
Fiutowski, Jacek, 3D
Forbes, Kayn A., 34
Fotiadi, Andrei, 3I
Gaponik, N., 0P
Gili, Valerio, 2B
Ginis, Vincent, 08
Gladskikh, Igor A., 2Y
Gladskikh, Polina V., 2Y
Golan, Yuval, 0L
González, F., 1E
Grant, James, 38
Griol, Amadeu, 1I
Gromova, Yuliya A., 3A, 3G
Gun’ko, Yurii K., 0P, 31
Gutiérrez, Y., 1E
Haacke, Stefan, 0O
Haïdar, Riad, 09, 35
Harnisch, Emely Marie, 22
Hechster, Elad, 0L
Helmy, Amr S., 0C
Héron, Sébastien, 09
Higgins, L. J., 0P
Hou, Tzh-Yin, 28
Huang, Hsiu-Ying, 1W
Huang, Hsiu-Ying, 28
Huant, Serge, 1Y
Hung, Wei-Ling, 28
Hwang, Jeongwoo, 2S
Iatsunskyi, Igor, 2H
Inci, Mehmet Naci, 13
Istratov, A., 3J
...
Samad, Ricardo Elgul, 39
Samokhvalov, Pavel S., 1U, 3L
Sanz, J. M., 1E
Sarusi, Gabby, 0L
Schmidt, Jürgen, 3H
Schmitt, Robert, 2Z
Schweiger, Gustav, 1T
Seetharamdoo, Divitha, 0B
Selvan, Rekha, 2P
Sharma, Anuj, 2A
Sharma, Tarun, 2A
Shen, Ji-Lin, 2R
Shin, Jae Cheol, 2S
Silva, Fávia Rodrigues de Oliveira, 3R
Singh, Lokendra, 2D
Skidanov, Roman V., 3E
Skorupski, Krzysztof, 2M
Smynyna, Valentyn, 2H
Sobolewska, Elżbieta K., 3D
Solodar, Assi, 0L
Spáth, Christian, 3H
Spreen, Anika, 3H
Srivastava, Rohit, 23
Starovoytov, Anton A., 3P
Su, Yiwenn, 0C
Susha, A. S., 0P
Tal, Amir, 0L
Tamura, Hiroyuki, 0O
Tarasov, A. P., 20
Tchemiaiskal, Elina A., 1T
Templeman, Tzvi, 0L
Tong, Quang Cong, 2C
Toropov, Nikita A., 2Y, 3C, 3F, 3P
Tretyachenko, Anna, 3L
Valdivia-Velaro, Francisco J., 37
Vartanyan, Tigran A., 1J, 2Y, 3C, 3F, 3J
Verdun, Michael, 35
Vieira, Nilson Dias, 39
Visoly-Fisher, Iris, 0L
Vilenchik, Vladimir, 0L
Vokhmintcev, Kirill V., 1U
Wang, Shutong, 26
Wang, T., 0B
Watson, A. M., 1E
Wendl, Maximilian, 3H
Williams, Mathew D., 0N, 34
Wozniak, Mariusz, 27
Yin, Jiajia, 26
Yuan, Chi-Tsu, 2R
Zeitner, Uwe D., 2I
Zhang, Hong, 26
Zhang, Hua, 26
Zhang, X., 0P
Zhang, X., 1E
Zhou, Shouhuan, 26
Zhu, Zhendong, 12
Zlatov, Andrei S., 3A
Zolotovskii, Igor, 3I
Conference Committee

Symposium Chairs

Francis Berghmans, Vrije Universiteit Brussel (Belgium)
Jürgen Popp, Leibniz-Institut für Photonische Technologien e.V.
(Germany)
Ronan Burgess, European Commission (Belgium)
Peter Hartmann, SCHOTT AG (Germany)

Honorary Symposium Chair

Hugo Thienpont, Vrije Universiteit Brussel (Belgium)

Conference Chairs

David L. Andrews, University of East Anglia (United Kingdom)
Jean-Michel Nunzi, Queen’s University (Canada)
Andreas Ostendorf, Ruhr-Universität Bochum (Germany)

Conference Programme Committee

Angus J. Bain, University College London (United Kingdom)
Mario Berberan-Santos, Universidade de Lisboa (Portugal)
Renato Bozio, Università degli Studi di Padova (Italy)
Céline Fiorini-Debuisschert, Commissariat à l’Énergie Atomique
(France)
Vincent Ginis, Vrije Universiteit Brussel (Belgium)
Yuval Golan, Ben-Gurion University of the Negev (Israel)
Erez Hasman, Technion-Israel Institute of Technology (Israel)
Yasushi Inouye, Osaka University (Japan)
Gediminas Juzeliunas, Vilnius University (Lithuania)
Martti Kaaranen, Tampere University of Technology (Finland)
Satoshi Kawata, Osaka University (Japan)
Francois Lagugné-Labarthet, The University of Western Ontario
(Canada)
Isabelle Ledoux-Rak, Ecole Normale Supérieure de Cachan (France)
Christoph Lienau, Carl von Ossietzky Universität Oldenburg (Germany)
Nazario Martin, Universidad Complutense de Madrid (Spain)
Raúl J. Martín-Palma, Universidad Autónoma de Madrid (Spain)
Jesper Mork, Technical University of Denmark (Denmark)
Michel Orrit, Leiden University (Netherlands)
Carsten Reinhardt, Laser Zentrum Hannover e.V. (Germany)
Anatoly V. Zayats, King’s College London (United Kingdom)
<table>
<thead>
<tr>
<th>Session Chairs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Near-field Optics</td>
<td>Angus J. Bain, University College London (UK)</td>
</tr>
<tr>
<td>2. Light Harvesting and Frequency Conversion</td>
<td>Angus J. Bain, University College London (UK)</td>
</tr>
<tr>
<td>3. Cavities and Waveguides</td>
<td>David L. Andrews, University of East Anglia (UK)</td>
</tr>
<tr>
<td>4. Quantum and Nonlinear Optics in Nanostructures I</td>
<td>Jean-Michel Nunzi, Queen's University (Canada)</td>
</tr>
<tr>
<td>5. Quantum and Nonlinear Optics in Nanostructures II</td>
<td>Angus J. Bain, University College London (UK)</td>
</tr>
<tr>
<td>6. Control of Nanoscale Optical and Electronic Processes</td>
<td>Jean-Michel Nunzi, Queen's University (Canada)</td>
</tr>
<tr>
<td>7. Nanomanipulation with Light</td>
<td>Christoph Lienau, Carl von Ossietzky University (Germany) Jean-Michel Nunzi, Queen's University (Canada)</td>
</tr>
<tr>
<td>8. Surface Plasmons and Devices</td>
<td>Anatoly V. Zayats, King's College London (UK)</td>
</tr>
<tr>
<td>9. Nanomicroscopy</td>
<td>Andreas Ostendorf, Ruhr-Universität Bochum (Germany)</td>
</tr>
<tr>
<td>10. Photoactive Arrays</td>
<td>Andreas Ostendorf, Ruhr-Universität Bochum (Germany)</td>
</tr>
<tr>
<td>11. Plasmonics and Surface Nanostructures</td>
<td>Mario Berberan-Santos, Universidade de Lisboa (Portugal)</td>
</tr>
<tr>
<td>12. Structured Light</td>
<td>David L. Andrews, University of East Anglia (UK)</td>
</tr>
<tr>
<td>13. Nanoscale Optics</td>
<td>Andreas Ostendorf, Ruhr-Universität Bochum (Germany)</td>
</tr>
<tr>
<td>14. Functionalized Sensing</td>
<td>Mario Berberan-Santos, Universidade de Lisboa (Portugal)</td>
</tr>
</tbody>
</table>